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I. INTRODUCTION 

A. General Comments 

Resonant circuits are of great Importance in applications such as 

oscillator circuits, tuned amplifiers, frequency filter networks, 

wavemeters for measuring frequency, etc., at frequencies ranging from 

a few Hertz to optical frequencies. Electromagnetic resonators can 

assume several different physical forms, depending largely upon the 

frequency of operation of the particular circuit in which the resonator 

is used. 

Electromagnetic resonators are classified on the basis of their 

characteristics at and near resonance—the condition when the time-

averaged electric- and magnetic-field energies are equal. The char­

acterization near the frequency at which resonance occurs is based 

on the frequency of resonance and a term called the quality factor 

or Q. The quality factor is related to the ratio of the energy stored 

within the resonator to the power dissipated in the resonator. 

At lower frequencies (below about 100 MHz) electromagnetic 

resonators are generally realized from conventional lumped inductance 

and capacitance elements. In this frequency range, wavelengths are 

generally long compared to the physical dimensions of the components. 

At higher frequencies where wavelength effects must be considered 

(approximately 100 to 1000 MHz), transmission-line sections with open-

circuit or short-circuit terminations are used as electromagnetic 

resonators with the specific configuration used depending upon the 

specific application. The behavior of these transmission-line resonators 
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is not unlike that of the corresponding low-frequency lumped-element 

resonators. Because of the distributed parameter nature of trans­

mission-lines, however, these resonators will exhibit a multiplicity 

of resonances which must not be ignored in that undesired spurious 

responses may result. 

At frequencies higher than about 1000 MHz, the value of the qual­

ity factor for transmission-line resonators deteriorates and metallic 

enclosures, or cavities, are used instead. The electric and magnetic 

fields are contained within the structure and are supported by electric 

charge distributions on and electric currents flowing in the walls. For 

cavities, the frequency of resonance is determined primarily by the 

physical characteristics of the structure (size, shape, dielectric mate­

rial) and the electromagnetic field at resonance. As is true for trans­

mission-line resonators, more than one resonant frequency is possible. 

The quality factor is dependent upon similar factors and, additionally, 

the material from which the resonator is constructed. A detailed examina­

tion of the electromagnetic field pattern for a particular mode of inter­

est will indicate that the resonator boundary may be modified somewhat 

without greatly affecting the charge and current distributions there. 

A trapped-mode resonator is a microwave resonator configuration 

which Is able to constrain an electromagnetic field despite physical 

openings in its boundary surface. By the appropriate choice of the 

shape of the openings, it is possible to suppress certain of the un­

desired resonances which would exist In a conventional solid wall 

resonator while having very little effect upon the desired resonance. 
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B. Applications of Trapped-Mode Resonators 

The low-loss characterization of a trapped mode resonator plus 

the inherent rejection of certain resonances make its utilization as 

a microwave circuit element an obvious application. Post, Potter, 

and Risser (24) have discussed the use of a circular trapped-mode 

resonator for microwave filter applications. 

Matthaei and Weller (20) constructed a circular trapped-mode 

band-pass filter and conducted a testing program to examine the 

spurious responses of their device. They report excellent rejection 

of signals in the stop-band of a four-resonator filter with two of 

the resonators being trapped-mode sections. The trapped-mode resonators 

were of cylindrical geometry with grooves about the circumference of 

the cylindrical surface. Thus, only a circumferential conduction 

current could exist and many of the unwanted modes which would other­

wise be present were supressed. 

In a companion article to the one cited immediately above, 

Schiffman, Matthaei, and Young (29) reported on a rectangular geometry 

trapped-mode filter. The operation of the resonators in filter was 

essentially that of resonators constructed of conventional rectangular 

waveguide except that in place of shorting plates, metallic septa were 

placed to form the mode-trapping boundaries. The absence of spurious 

pass-bands over a wide frequency range is reported for this configura­

tion, also. 

Risser (27) constructed and tested circular geometry trapped-mode 

band-pass filters consisting of three and five trapped-mode resonators. 
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His discussion gives details of alignment as required to provide the 

desired pass-band response characteristic. He also provides data 

describing the perfomnance of the realized filters. 

The design and analysis of a tunable cylindrical geometry trapped-

mode resonator was reported by Morton (23). By changing the position 

of the conducting rings at the circular boundary in a particular manner, 

the resonant frequency of the trapped-mode section could be adjusted. 

Thus, a tunable resonator with constant axial length was realized, per­

mitting the construction of a filter which does not exhibit a change 

in size as it is aligned. Quality factor measurements indicated that 

the resonator tested had low losses throughout its tuning range. 

Robinson̂  conducted tests of rectangular and circular open-wall 

cavities and reported the resonant frequency and quality factor data. 

Included was data relating the decrease of resonator quality factor to 

the deviation from parallel of the conductors on the cylindrical 

boundary of trapped-mode resonators. 

Potter (25) analyzes a circular geometry trapped-mode resonator 

as a periodic structure and discusses its utility as a sampling cavity, 

perhaps in a refractometer such as that realized by Vetter and Thompson 

(31). Because of the high degree of openness of Potter's trapped-mode 

resonator it is suggested that it might provide more rapid flushing 

than would the particular resonator design used by Vetter and Thompson 

R̂obinson, L. A. Palo Alto, Calif., Experimental Results. 
Private communication. 1966. 
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and thereby make the refractometer more sensitive to short-term 

variations in refractive index. 

C. Statement of the Problem 

It is the purpose of this thesis to investigate specialized 

analytical techniques for the calculation of conductor losses in 

trapped-mode resonators. Of particular interest are those configura­

tions where an exact solution of the loss-free problem is not feas­

ible in that there are two regions for solution which must be joined 

at a surface which may not be explicitly determined in a mathematical 

sense. The specifications of resonant frequency and quality factor 

are of great utility for engineering applications of resonators such 

as these. 

Several researchers have reported work which is somewhat related 

to the problem at hand. Marcatili (19) solved the problem of the heat 

loss in metallic waveguide walls with grooves of circular cross section. 

His solution applies to circular grooves with a diameter which is small 

compared to the wavelength at the frequency of operation and large 

compared to the skin depth of the wall material. 

Morrison (22) solves a similar problem by making a quasi-static 

approximation at the grooved surface and using conformai mapping to 

solve Laplace's equation for the resulting two dimensional problem. His 

solution applies to grooves similar to those considered by Marcatili and 

achieves the similar result that the attenuation of a helix waveguide is 

higher than that of a comparable smooth wall guide. 
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By means of a modal expansion, the problem of finding the attenua­

tion and propagation factor of spaced-disc circular waveguide is con­

sidered by Gent (11). His formulation yields the result that the 

attenuation of a spaced-disc guide (a structure not unlike the circular 

walls of a trapped-mode resonator) is lower than that of a solid wall 

guide. Aljthough his problem is not identical to that of Marcatili or 

Morrison, he acknowledges the apparent contradiction without resolving 

it. 

Bryant (6) considers the propagation in corrugated waveguides, 

devoting his attention primarily to those modes which are useful in 

linear accelerator applications and to the corresponding aspects of 

the propagation constants of the guided waves. 

These references are useful to the problem here only to the extent 

that the electromagnetic field solution developed for the waveguide 

situation may be extended to solve the corresponding resonator problem. 

As is also true for the periodic structure analysis previously mentioned, 

it is felt that there is a lack of flexibility in such a technique in 

that the formulation of the problem for reactive boundaries which possess 

other than simple periodicity is apt to be quite complicated. 

In the following development, there are two examples of trapped-mode 

reâônatûrs for which the lossless problem may be solved exactly. Using 

the usual perturbation technique, the losses are calculated for these 

examples and the quality factor is shown to be greater than for the 

corresponding solid wall resonators. The inclusion of these specific 

examples is not intended to constitute a generalization that all trapped-

mode resonators will exhibit quality factors which are greater than 
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their solid wall counterparts, but to establish that the.situation is 

not unreasonable. 

Attention is then given to the solution of those trapped-mode 

resonator configurations which do not yield to exact lossless electro­

magnetic field solutions. Two techniques are considered: solution by 

means of a variational formulation and by finite-difference techniques 

appropriate for use on a digital computer. 

Finally, specific examples of the approximate techniques developed 

are given in detail. The result of corresponding laboratory measure­

ments is included. 
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II. ANALYSIS OF TEAPPED-MODE STRUCTURES; CLOSED-FORM SOLUTIONS 

A. Introductory Comments 

A trapped-mode resonator may be considered to be a resonator in 

which the electromagnetic field is constrained by a reactive surface 

over part or all of the boundary. Since the physical realization of 

a reactive surface involves the reflection of energy by some structure, 

an important consideration is whether the replacement of a metallic 

surface with a reactive one will seriously degrade the quality factor 

of the resonator. 

The following two examples are intended to provide some insight 

into this question. The first example compares a closed rectangular 

resonator operating in its dominant mode with a trapped-mode resonator 

which has a similar electromagnetic field configuration. The trapped-

mode resonator is formed from the closed resonator by removing one 

wall and replacing it with a reactive surface which is realized by 

means of a cutoff waveguide. The second example compares a closed 

cylindrical cavity with a trapped-mode resonator which has a reactive 

surface replacing its cylindrical conducting surface. Again, the reac­

tive surface is realized by means of a cutoff waveguide. 

The examples are limited somewhat in that there is little, if any. 

practical application in an engineering sense for the particular phys­

ical configurations considered. This is due to the fact that the ad­

justment of the resonant frequency would be difficult. Further, the 

assumption of a loss free dielectric might not be practical. 
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The significance of these examples is that their solutions are 

exact within the limits imposed by the perturbation calculation used 

for good conductors. This approximation, which is used throughout 

this thesis, is well established and is documented in numerous texts 

(5, 13, 26). In this technique, the approximate field solution is 

found by assuming that there are no losses. From this solution, the 

electric surface current density in the conducting walls is determined 

and the perturbed quantity—the wall loss—is found by multiplying 

this current density by the surface resistance of the assumed wall 

material. This quantity is then integrated over the surface of the 

cavity to determine the power dissipated. 

The quality factor is given by Harrington (13) as 

Q = (2.1.1) 

Since at resonance the peak energy stored in the electric field is 

equal to the peak energy stored in the magnetic field it may be written 

that 

W  =  W  +  W = 2 W  = 2 W  (2. 1 . 2 )  
e m e m 

where the overbar is used to denote the average with repect to time. 

The evaluation of Equation 2.1.1 is slightly simplified if part of 

Equation 2.1.2 is used: Because the calculation of generally involves 

the magnetic field intensity (evaluated at the resonator walls in order 

to determine the current density there), the energy storage term W will 

be expressed in terms of the time-averaged magnetic energy storage term 

Ŵ . This approach simplifies the constant terms which must be manipulated 
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to evaluate the quality factor using Equation 2.1.1. (This approach 

is similar to that of Moreno (21).) 

Appropriate Integral expressions for and are 

W = JU FFF lll̂  dv (2.1.3) 
m 

and 

P . R ;/ |H|2 |ds|. (2.1.4) 
 ̂ ® S 

Combining the above four equations gives 

/// 1h|̂  dv 

Q = — 2 ' (2.1.5) 
s ;/ |h|2 Ids I 

s 

Since the surface resistance is dependent upon frequency, the two 

examples that follow will compare losses in trapped-mode resonators to 

losses in closed resonators with the same resonant frequency. Thus, 

any change in quality factor due to change of surface resistance is not 

a consideration. (If comparison of quality factors is to be made over 

a narrow frequency range, this surface resistance change is generally 

negligible in that the term varies as the square root of frequency (5, 

13).) 

B. Rectangular Geometry : Quasi-dominant Mode 

The operation of a. rectangular cavity at its lowest resonant fre­

quency (dominant mode) is the closed resonator to be considered in this 

example. Consider that such a resonator has all walls of similar 

material and has dimensions a, b, and c (all in meters and such that 
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a <. b and a <. c) oriented along the x, y, and z coordinate axes (respec­

tively) in a right-handed cartesian system. This situation is illus­

trated in Figure 2.1. 

The lowest resonant frequency for such a configured resonator is 

well known (13) and is given by 

fj. = 0)̂ /271 = + 1/ĉ )̂ . (2.2.1) 

This resonant frequency corresponds to an electromagnetic field distri­

bution Which is proportional to 

- sin(ïïy/b)sin(ïïz/c) 

H = (-Ti/ja)Vic)sin(ïïy/b)cos(ïïz/c) 
y (2 .2 .2)  
= (ïï/ja)iib)cos(ïïy/b)sin(ïïz/c) 

E  =  E  =  H  = 0 .  
y z X 

The separation equation is contained in Equation 2.2.1 and is rewritten 

for convenience as 

e e = (ir/b)̂  + (ir/c)̂  (2.2.3) 
r 0 0 c 

where is the relative permittivity of the non-magnetic dielectric 

contained within the volume of the resonator. 

Evaluating Equation 2.1.3 using the field expressions given by 

Equation 2.2.2 gives the result that the quality factor for the closed 

dominant mode (TÊ ^̂  mode) resonator is 

„cl09cd w (a/4)(b/c + c/b) _ (2.2.4) 
Q = — 2 2 

Rg ab/c + ac/b + %(b/c + c/b) 
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X 

Figure 2.1. Closed rectangular resonator 
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In order to evaluate the losses in a rectangular resonator with 

part of the boundary replaced by a reactive surface, the following 

physical configuration is considered. The face at z = c of the 

rectangular resonator just considered is removed and replaced by a 

waveguide with x- and y- dimensions equal to a and b, respectively. 

See Figure 2.2. In order to insure that the surface so created is 

reactive, the waveguide must have a cutoff frequency which is greater 

than f̂ . This will be achieved by proper choice of the relative 

permittivities for the dielectrics which are in the closed cavity 

volume and in the interior of the waveguide. Also, the z-dimension 

of the dielectric must be changed to d meters in length in order that 

the resonant frequency be unchanged. 

For the relative dielectrie~'cronstant in the closed resonator being 

equal to and the relative dielectric constant in the waveguide equal 

to ê , the following inequality may be developed from waveguide cutoff 

considerations given above by using Equation 2.2.1 and an expression 

for the cutoff frequency (see Reference 1, 5, 13, or 26), 

> 1 + (b/c)2 (2.2.5) 

Clearly, the condition that must always be satisfied. 

The field solution for the region z ̂  d is of the form 

" Ê sin(7ry/b)exp(-Kz) 

H • (kE /j(4i)8in(ïïy/b)exp(-Kz) 
 ̂  ̂ (2.2.6) 

Hg • (TTE^/j(DUb)co8(TTy/b)exp(-Kz) 
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X 

y 

Figure 2.2. Trapped-mode rectangular resonator 
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where is an amplitude coefficient which is to be determined. 

The separation equation for this region is 

(n/b)2 - <2. (2.2.7) 

The field solution and separation equation for the region 0 £ z £ d 

are given by Equations 2.2.2 and 2.2.3, respectively. 

Equating the electromagnetic field components as given by Equation 

2.2.2 and 2.2.6 with z = d yields two independent relationships. The 

ratio of these two results gives an expression for K in terms of the 

physical parameters of the problem. Namely, 

For only one extremum of electric field intensity in the region 0 ̂  z £ d 

and under the constraint that k > 0, the behavior of the cosecant func­

tion dictates that c/2 < d < c. 

It is now possible to specify the ratio of to by eliminating 

2 _ 
0) y e between the separation Equations 2.2.3 and 2.2.7. The relation 
r 0 0 

thus obtained is 

It may be noted that this equation is consistent with the inequality 

2.2.5. Also, this equation may be rearranged to specify the dimension 

d in terms of the various other parameters. 

The equation of the electromagnetic field terms for the two regions 

also determines the amplitude coefficient Ê . Making use of Equation 

2.2.8 gives 

K = -(7r/c)cot(ïïd/c). ( 2 .2 .8 )  

e /e = (1 + (b/c)̂ )/(l - (b/c)̂ cot̂ (d/c)). 
c w 

(2.2.9) 
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= sin(TTd/c)exp((Trd/c)cot(Trd/c)) . (2.2.10) 

The electromagnetic field solution for the trapped mode resonator 

of Figure 2.2 is complete. The components of electric and magnetic 

field intensity are given by Equations 2.2.2 and 2.2.6 combined with 

Equations 2.2.8, 2.2.9, and 2.2.10. The solution is given in terms 

of the dimensions of the closed resonator with the desired resonant 

frequency. 

The integrals involved in the calculation of the quality factor 

may now be formulated. It is convenient to delete the factor 1/jwu 

which is common to all of the magnetic field intensity terms. With 

such a deletion it may be shown that 

/// |H|̂  dv - (ab/4)(d(l/ĉ  + 1/b̂ ) 

2 2 
+ (c/ïï)(l/c - 1/b )sin(2ïïd/c) 

+ (1/k) (coŝ (Trd/c)/ĉ  + sin̂ (ird/c)/b̂ )) 

(2.2.11) 

and 

// |h|̂  |d8_| = ab/2ĉ  + (a/b̂ ) [d - (c/ir)sin(2Trd/c) 
g 

+ (l/K)sin̂ (nd/c)] + (b/2)[d(l/ĉ  + l/b ) 

+ (c/n)(l/ĉ  - l/b̂ )8in(2ïïd/c) 

4 (1/k) (cos^(7rd/c)/c^ + sin^(Trd/c)/b^) 3= 

(2.2.12) 

When the above two expressions are substituted into Equation 2.1.5, 

the resulting expression is one which is not easily compared with the 
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result for the closed resonator (Equation 2.2.4). In order to facil­

itate a comparison, a specific example will be considered. 

Consider that the dimensions of the closed resonator are such 

that 2a = b = c. With this choice, Equation 2.2.5 forces that the 

ratio of the relative dielectric constants be greater than 2. For 

this example, consider that e =2.25 and e = 1.0. These values are 
c w 

typical of polystyrene and free space, respectively. Recall that 

there has been no loss within the dielectric itself considered. 

Using Equation 2.2.9, the dimensions c and d may be related as 

(It has been shown that c/2 < d < c must be satisfied and hence the 

choice of the minus sign on the argument of the inverse tangent 

function.) 

Substitution of the dimensional constraints into Equation'2.2.4 

yields for the closed resonator 

For the trapped-mode resonator. Equations 2.1.5, 2.2.11, and 2.2.12 

supplemented by Equations 2.2.8 and 2.2.13 give the result that 

d/c = (l/7r)tan ̂ (-3) = 0.60242. (2.2.13) 

(W/R )(b/8) (2.2.14) 

ôîr = (w;/Rs)(b/8) (1.656) (2.2.15) 

or 

open, closed 

'oil '̂ 011 
(2.2.16) 
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Thus, the replacement of one conducting wall of a closed resonator 

(with the specific dimensional relationships considered) with a reactive 

surface formed by a section of cutoff waveguide, and the modification of 

the physical size of the dielectric in the previously closed resonator, 

results in an increased quality factor. 

C. Cylindrical Geometry: Circulating Electric Field Mode 

The example to be considered next was chosen because of its simi­

larity to a somewhat frequently used trapped-mode configuration (20, 23-

25, 27). The example is that of a cylindrical resonator with radius a 

and axial length d (both in meters; see Figure 2.3) which is operated 

in the mode (nomenclature is that of Harrington (13)). In this 

mode, the electric field may be thought of as circulating about the 

axis of the resonator. For this solid cylindrical wall configuration 

there Is degeneracy with the TM̂ ^̂  mode. The analysis below assumes 

that this latter mode is not present. 

For the coordinate system shown in Figure 2.3, an appropriate 

expression for the electromagnetic field within the resonator is 

E. = sin(ïïz/d)J.(3.832r/a) 
9 i 

• (w/jwwd)cos(nz/d)Ĵ (3.832r/a) 

- (-3.832/ju)pa)sin(ïïz/d)jQ(3.832r/a) 
(2.3.1) 

The separation equation is 

= (ïï/d)̂  + (3.832/a)̂ . (2.3.2) 
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z 

r 

Figure 2.3. Closed cylindrical resonator 
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Evaluation of Equation 2.1.5, using the field given by Equation 2.3.1 

gives the result: 

, . (OP dâ  (%/d)2 + (3.832/a)̂  
ĉlosed 2 ' <2.3.3) 

Rg 2 2(Tra/d) + ad(3.832/a)̂  

The trapped-mode resonator to be considered is one similar to that 

above but with the cylindrical surface removed and a cutoff radial wave­

guide attached in its place to create a reactive surface. In order that 

the resonant frequency not be changed, the radius of the dielectric with 

permittivity must be changed to c meters. The trapped-mode resonator 

thus formed is shown in Figure 2.4. 

The electromagnetic field solution for the region r > c in Figure 

2.4 is 

E, = E 8in(ïïz/d)K,(Kr) 
9 w 1 

H = (E n/jwwd)cos(%z/d)K,(Kr) 
 ̂  ̂ (2.3.4) 
= (Ê K/jww)sln(nz/d)KQ(Kr) 

E = E = H. =• 0 

where Ê  is an amplitude coefficient which is to be determined. The 

separation equation is 

wfw e E - (ïï/d)2 - <2. (2.3.5) 
r 0 0 w • 

The requirement that the resonant frequency of the closed cavity 

be greater than the cutoff frequency of the radial waveguide gives that 

ê /ê  > 1 + (3.832d/ïïa)2. (2.3.6) 
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r 

Figure 2.4. Trapped-mode cylindrical resonator 
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2 
Further, eliminating between Equations 2.3.2 and 2.3.5 gives 

e /e = (1 + (3.832d/ïïa)̂ )/(l - (Kd/n)̂ ) (2.3.7) 
c w 

which clearly satisfied the inequality 2.3.6. Alternatively, Equation 

2.3.7 may be rearranged to be 

< = (n/d)2(l - - (ê /Ê )(3.832/a)2. (2.3.8) 

Equating field components at r = c gives two independent relation­

ships. Namely, 

Ĵ (3.832c/a) = Ê K̂ (kc) (2.3.9) 

and 

(-3.832/a)J.(3.832c/a) = E KILAKC) , (2.3.10) 
u w u 

Dividing Equation 2.3.10 by Equation 2.3.9 gives 

-3.832 J (3.832c/a) K„(KC) 
y K — . (2.3.11) 

a Ĵ (3.832c/a) K̂ (KC) 

Now, given the physical parameters a, d, ê , and ê . Equation 

2.3.11 may be solved (with the aid of Equation 2.3.8) for the dimension 

c. This is not a direct process; however, a trial-and-error process 

on a digital computer is quite effective. When c is determined, Ê  

may be determined by use of Equation 2.3.9 and the electromagnetic 

field solution for the trapped-mode resonator is complete. 
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Finally, the quality factor is evaluated using the field solution 

and Equation 2.1.5. The result is 

where k = 3.832/a. 

As was true for the previous example, the resulting expression for 

the quality factor for the trapped-mode resonator is not easily compared 

to the corresponding result for the closed resonator. Therefore, a 

specific numerical result will be given. If the relationship a = d is 

imposed, then Equation 2.3.6 requires that ê /ê  > 2.487. If is 

chosen to be 3.0 and is chosen to be 1.0 then Equation 2.3.8 may be 

evaluated for the value of k. A trial and error procedure using 

Equation 2.3.10 gives the result that c/a = 0.68402. 

With these constraints. 

ÔÎR " ("̂ D/4RG) {1 + (KD/N)2/[J2(KC)/J2(KC) 

- (2/kc)(JQ(kc)/Ĵ (kc))]} (2.3.12) 

= (wUd/Rg) (0.35665) (2.3.13) 

and 

ôîr " (wWd/Rg)(0.43814) (2.3.14) 

so that 

(2.3.15) 

As was true in the previous example, the replacement of a conduct­

ing wall of a closed resonator with a reactive surface formed by a 
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cutoff waveguide has resulted in an increased quality factor. Further, 

although it has not been shown here, it should be noted that the 

degeneracy has also been removed by the modification in the cylin­

drical boundary. 
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III. ANALYSIS OF TRAPPED-MODE STRUCTURES: APPROXIMATE SOLUTIONS 

A. Introductory Comments 

The solutions examined in the previous section were characterized 

by the fact that an exact solution of the electromagnetic field problem 

for the lossless situation is possible. Some trapped-mode resonator 

configurations, however, are not so easily solved in that the electro­

magnetic field solution in the vicinity of the reactive surface is not 

known. 

An example of such a configuration is that considered by Potter 

(25). His analysis considers the reactive surface to be a periodic 

structure and uses an analytical technique similar to that of Watkins 

(32). While Potter's results agree quite well with his analysis, 

extension of the analysis to structures possessing other than a simple 

periodicity is not direct. 

A technique which may be utilized for resonant frequency studies 

is a variational formulation. Such a formulation is discussed by 

Harrington (13) and was used by Morton (23) for the analysis of a tunable 

trapped-mode resonator. This technique has the advantage that the 

parameter expressed by the variational formula has a stationary form: 

a form which is relatively insensitive to the accuracy of the choice 

of the approximate electromagnetic field solution. (The choice of an 

approximate solution is implicit in that an exact solution is not 

known.) 
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A variational formulation for a class of assumed trial fields is 

developed below. Since the complex angular resonant frequency is formu­

lated, the losses (and hence the quality factor) may be inferred from 

the imaginary term (13). 

The availability of a high-speed digital computer with large 

storage capacity makes practical the solution of partial differential 

equations by numerical methods (14, 13). Some considerations of a 

program are discussed below and a program to solve a specific example 

trapped-mode resonator is discussed in Appendix B and listed in Appendix 

C. 

B. Variational Formulation 

As discussed in the introduction, resonance is said to exist when 

the time-average electric and magnetic energies within the volume of 

the cavity are equal. This condition exists at certain frequencies; 

hence, it is desired to formulate an expression which will give the 

resonant frequency in terms of the electromagnetic field. Or, since the 

electric and magnetic field intensities may be related, the resonant 

frequency might be expressed as a function of either the electric or 

magnetic field intensity. Assume that the resonator is such that the 

formulation of the EXACT êieeLSrômagneLie field solution is practically 

impossible. Thus, some sort of trial field will have to be estimated 

and it will be necessary to formulate the resonant frequency of the 

structure in terms of the trial field. Then, in order that the resonant 

frequency calculation be valid, it is desirable to have the resonant 

frequency equation in a stationary form. 
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Consider that the trial field is given by 

Atrial = - + Pe, (3.2.1) 

where E represents the exact (but unknown) solution and e is the 

2 
unsealed error in is used to formulate w , the square of the 

angular resonant frequency of a cavity. Then, the Maclaurin expansion 

2 
of u as a function of p is 

ŵ (p) . of + p [— 1  ̂r̂ L 
3p 

] + 2- [- 2 
p=0 21 3p 

] 
p=0 

+ . . . (3.2.2) 

2 
The first term of the expansion is the square of the true resonant 

2 2 
frequency since w (p=0) = ŵ . 

In the variational notation (16) Equation 3.2.2 is written as 

ŵ (p) - 0)̂  + + 6̂ 0)̂  + . . . (3.2.3) 

with a correspondence between the various terms of the two expansions. 

2 
A formula for w is said to be stationary if the first variation of 

2 2 
(jd (i.e., 6w ) vanishes. This is equivalent to 

2 
BW 

3p 
= 0. (3.2.4) 

p-C 

2 
Harrington (13) indicates that a complex u will have a saddle point 

at p • 0. 

An important consideration is the procedure used to establish 

stationary formulas. One technique is to construct formulas to express 
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the desired parameter and then discard those which do not satisfy 

Equation 3.2.4. An alternative and more orderly procedure is to apply 

the reaction concept of Rumsey (28). The particular procedure as 

applied to the construction of stationary formulas is given by Harring­

ton (13) and is the one used below. Berk (4) also discusses varia­

tional principles for resonator and waveguide problems. 

The trapped-mode resonators to be considered are characterized 

by two physical sections. One section is not unlike a conventional 

closed resonator except that its boundary has been modified by the 

attachment of the other section. The second section is such that it 

presents a reactive surface at the point of attachment to the first 

section. Since the transition between the two sections is generally 

quite abrupt, an exact electromagnetic field solution is difficult if 

not impossible. It is this difficulty which the use of a variational 

formula will help to overcome. 

The purpose now Is to establish a stationary formula which will be 

appropriate to determine the resonant frequency of a trapped-mode reson­

ator which is characterized as above. To that end, consider first the 

nature of the trial field which might be used. 

Since one section of the trapped-mode resonator is similar to a 

closed resonator, assume that the lossless electromagnetic field solu­

tion corresponding to such a closed resonator is known. Such a reson­

ator is depicted in Figure 3.1a. Over any surface s which is within 

or on the boundary of the resonator (shaded surface in Figure 3.1b) the 

tangential electric field n x ̂  and a term related to the tangential 
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Figure 3.1. Symbolic trapped-mode resonator development 
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magnetic field n x (y'H x E) are known. If a reactive surface is 

established over s by the attachment of a second section as depicted 

in Figure 3.1c,then it is possible to formulate a trial field which 

will force continuity of either n x or n x (M X £) (or possibly 

both) over s by means of an appropriate modal expansion in the newly 

attached section. This continuity of tangential electric or magnetic 

field intensity forces interdependence of the trial field in the two 

regions. 

If the condition that n x be continuous over s is chosen and 

if s coincides with the boundary of the original resonator of Figure 

3.1a, then the (mathematical) coupling between the two regions vanishes 

since for the lossless solution the tangential electric field will now 

be zero on s. Hence, the choice of continuity of n x (li H x E) over 

s is made to relate the trial field at the boundary of the two sections. 

Any resulting discontinuity of tangential electric field there will be 

accounted for in the development of the variational formula below. 

Rumsey (28) defines the reaction of the electromagnetic field 

resulting from a source distribution a upon the source distribution 

b as 

<a,b> = /// (Ê -dĴ  - Hg-dM̂ ) (3.2.5) 
V 

where exp(ju)t) time-dependence is implicit. He further interprets that 

if all media are isotropic and the sources a and b are both within v, 

then reciprocity gives that 

<a,b> = <b,a>. (3.2.6) 
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Harrington (13) establishes that since for a resonator the true field 

at resonance is a source-free field the reaction of any field with the 

true source is zero or, more specifically, 

<a,a> =0. (3.2.7) 

It is necessary to insure that the formula for the desired parameter 

(which is to be determined from the reaction) is stationary. Here, the 

concern is with the (angular) resonant frequency w. Considering equation 

3.2.7 as both w and p are varied (about and zero, respectively) we 

get that 

p = 0̂  p = 0̂  

The coefficient of 6p is zero since <a,a> is stationary about p = 0. 

Since the coefficient of is not in general zero, it must be true 

that ÔW = 0. The first variation of the resonant frequency about 

w = and p = 0 as constrained by Equation 3.2.? is zero» 

Following with the development of Harrington (13), the application 

of Equation 3.2.7 is to assume a trial field which satisfies the conven­

ient physical constraints and to determine its sources as follows; An 

assumed electric field may be supported by the electric current density 

given by 

J = -jweE - (l/jw)V X (]i~\ X E). (3.2.9) 

If the trial field violates the condition that ii x E = 0 on any surface 

(including the resonator boundary) then the source 



www.manaraa.com

32 

M = n X E (3.2.10) 

must be added at that surface to support the discontinuity. Now, 

Equations 3.2.5, 3.2.7, 3.2.9, and 3.2.10 may be combined to give a 

stationary formula in terms of an assumed electric field intensity E_. 

In a similar manner, a stationary formula in terms of an assumed 

H may be developed as may a so-called hybrid formula in terms of 

assumed E and H. The details of these developments are given in 

Harrington (13) and will not be repeated here. 

The formulation of the losses is based upon the small-loss approx­

imation discussed in the introductory comments of the previous section 

of this thesis. Further discussion of this approximation is available 

in various references (5, 13, 26). 

The restrictions placed upon the stationary formula to be generated 

are as follows: 

1) The formula will be in terms of a trial electric 

field intensity which satisfies n x E = 0 on the 

conducting boundary surfaces; 

2) Discontinuity of n x E over boundary or internal 

partitioning surfaces will be accounted for; 

3) Continuity of tangential magnetic field intensity 

(that is, continuity of n x (p x ̂ ) will be 

required everywhere except at conducting surfaces 

where the discontinuity will be supported by an 

appropriate electric surface current density. 
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Two situations for discontinuity of n x jE present themselves; at 

the junction of the two sections of the resonator volume and at good 

(but imperfectly) conducting boundaries. The development below char­

acterizes the surfaces over which these discontinuities exist according 

to the schematic representation of the resonator as depicted in Figure 

3.2. 

The surface s in Figure 3.2 is intended to represent the surface 

or surfaces within the volume of the resonator over which discontinuity 

in n X E is to be considered. This discontinuity is supported by the 

magnetic surface current 

Mg = n X (Eg - Ê ). (3.2.11) 

The surface S in Figure 3.2 is intended to represent the conducting 

boundary of the resonator. The discontinuity there is due to the 

imprecise nature of the trial field and is due therefore, to the lack 

of continuity of the chosen mathematical expression with physical 

reality. For a good conductor, the surface impedance (13) is given 

by Zg = Rg(l + j). The electric surface current density induced in 

the conducting walls is equal in magnitude but normal to the tangential 

magnetic field intensity there. In terms of the assumed trial field, 

Jg = -(l/ja)̂ )n X (w ̂ 2 X E) (3.2.12) 

where the surface current density J is consistent with the lossless 
—S 

trial field. Its value is such that the total electric current flowing 

per unit width is the same for the assumed lossless and the non-loss-free 
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n 

Figure 3.2. Generalized trapped-mode resonator 
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situations. Thus the (perturbing) electric field at S must be 

E = Z 'J or, 
— s -IS 

E = - (Rg(l + j)/jŵ )S. X (y X E). (3.2.13) 

The magnetic surface current density necessary on S to support this 

electric field intensity is given by -n x E or, 

Mg = (̂ (1 + j)/jiô )[(n-(pS X E))̂  - (y~\ X E)2] 

(3.2.14) 

after a standard vector identity has been applied. 

hlth the expression of magnetic field intensity in terms of the 

trial field as 

H = (1/jw) (li'̂ VxE), (3.2.15) 

the reaction given by Equations 3.2.7 and 3.2.5 may be formulated. The 

result is 

0 = FFF [-jweÊ  - (l/ja))E*£ x (y "2. x E) 

-(l/ju))Mg-(u"-̂ V X E) 

-(l/jaj)Mg-(y"̂ V X dv. (3.2.16) 

Of the four integrals Implied above, the last three may be put into 

simpler form after the simplifying operation of multiplication by w/j. 

The second term may be rearranged as follows: Recall the vector 

identity (A x jB) " B•(̂  x ̂  - A'(V x ̂ . Making the identifications 

-1 -1 2 
A=E and ̂  = y  ̂x E, the integrand becomes y (2 % E) -

2" (E X (y X E). The second term in this integrand is now the 
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divergence of a vector field and so may be treated using the divergence 

theorem. Then, noting that E x (p x E) 'dŝ  = (w % E)' (dŝ  x E) = 0 

on S since the tangential component of the trial field vanishes on S, 

this latter term vanishes. 

The third term has value only on the interior surface s. Thus the 

volume over which the integration is performed may be allowed to collapse 

until only s is enclosed. Then, there is an equal contribution on each 

aide of s so that the third integral becomes ZjVnxCEg-Ê ) ' | d̂ |. 

Using the scalar triple product, this becomes 2/̂ (E2-Eĵ )x(y ̂ £x̂ *d£. 

The final term in integrand of Equation 3.2.16 is zero everywhere 

except on the boundary surface of the resonator. Therefore a surface 

integration is appropriate for that term. 

2 
Finally, solving for lo gives the desired form. Namely, 

^2 . 1— X D̂ dv + 2//(E -E )x(y"\ X E) 'ds  
;//eE dv V s 

V 

R (1+j) 1 p 
- ;/ (M X y'̂ 7 X E))̂ id8l] (3.2.17) 

r S 

It should be noted that even though this formula was developed with 

application to a trapped-mode resonator in mind, it may be applied to 

any problem for which the trial field meets the constraints listed on 

page 32. 
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C. Finite-difference Formulation 

The availability of digital computers with large storage capability 

and high calculation speed has made practical the solution of partial 

differential equations by techniques which are impractical by hand 

calculation. Harrington addresses himself to the formulation of a 

variety of field problems for solution on a digital computer in Refer­

ences 14 and 15. Davies and Muilwyk (8) discuss considerations of 

solving the problem of the waveguide with uniform cross section with a 

digital computer program which uses finite-difference techniques. 

Beaubien and Wexler give attention to extending the work of Davies and 

Muilwyk to higher order modes (2) and to the calculation of attenuation 

coefficients of these higher order modes (3). A nearly universal refer­

ence on the subject of finite-difference methods for partial differ­

ential equations is that by Forsythe and Wasow (10). 

The problem of interest is that of solving the Helmholtz equation 

(9̂  + X)$ = 0, X > 0 (3.3.1) 

subject to appropriate boundary conditions on $• Generally, $ is 

taken to be a scalar which represents one component of a vector potential 

field which is pertinent to the specific problem being considered. (The 

approach used for the example in this thesis, however, is slightly 

different from those cited above (2, 3, 8, 14, 15) in that the problem 

considered is not that of finding the electromagnetic field in a wave­

guide of uniform cross section but that of finding the field in a 

resonator configuration where only one component of electric field 
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intensity is known to exist. Thus the partial differential considered 

in the example discussed in Appendix B is not quite that given by 

Equation 3.3.1. This difference does not affect the application of 

this discussion.) 

The function $ (indeed, an eigenfunction) is represented at dis­

crete mesh points within the boundary of interest. Since many wave­

guide problems (those with uniform cross section) have known dependence 

upon one special coordinate, the problem considered is usually that 

of Equation 3.3.1 with the Laplacian operator replaced by the trans­

verse Laplacian operator. Discretization converts the continuous 

problem to the matrix eigenvalue problem given by 

(A - AI)$j = 0 (3.3.2) 

where the subscript d is used to emphasize that the problem is now a 

discrete one. 

If the number of points in the mesh is not too large, the matrix 

eigenvalue problem of Equation 3.3.2 may be solved by hand by conven­

tional techniques (9). Large matrices may be inverted by means of 

digital computer routines. The accuracy of this latter technique may 

depend somewhat upon the care used in formulation of the problem in 

that the cumulative round-off error may be significant compared to the 

elements of the resulting matrix (15). However, solution in this 

manner does have the advantage that all of the eigenvalues of the 

discrete problem are determined. 

An alternative approach to the solution of Equation 3.3.2 is the 

use of a relaxation technique which calculates, Iteratlvely, each 
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element of tlie array of points representing $ in terms of the values 

at the adjacent points, using a guessed eigenvalue. (The construction 

of an appropriate relationship for such a calculation is described in 

appendix B.) After several (a few) iterations over the array, an 

estimate of the eigenvalue is made by using a discrete form of the 

Rayleigh quotient 

2 2 
X = $ ds///* ds. (3.3.3) 

Then, since the relaxation technique depends upon the eigenvalue 

the array representing $ is recalculated and new estimates for A, made 

until the eigenvalue is determined. The convergence of this procedure 

is enhanced by the use of a so-called over-relaxation technique such 

as that described in Reference 8. 

Generally, the eigenvalue will converge somewhat faster than will 

the array representing $ in that the Rayleigh quotient is a stationary 

form. Therefore, if accurate determination of is desired, the relaxa­

tion process should be continued somewhat beyond the time when the 

convergence of the eigenvalue is ascertained. 

A specific example employing the technique of finite differences 

is discussed in Appendix B. The purpose of that example is to solve a 

specific trapped-mode resonator and to calculate the corresponding 

quality factor. The results of that example are given elsewhere in 

this thesis. 



www.manaraa.com

40 

IV. EXPERIMENTAL INVESTIGATION 

A. Experimental Resonator Design 

In an effort to physically realize a simple trapped-mode resonator 

design which could be used to provide data to compare with analytical 

results, the design described below was chosen. 

A closed resonator with cylindrical geometry was constructed as 

shown in an exploded view in Figure 4.1 from a stack of seven brass 

plates which were approximately four inches square. The five internal 

plates each had a thickness of 0.1882 inches and had a hole in their 

center with a diameter of 1.9190 inches. The end plates were solid 

except as described below. The assembly is held together by four 

screws, one at each corner of the plates. 

Provision for coupling energy into the resonator was provided by 

means of two holes in one end plate. These two holes aligned with two 

similar holes in the sidewall of a piece of rectangular waveguide. The 

spacing between the centers of the two holes was approximately one-half 

of a guide wavelength at the frequencies of interest. An adjustable 

position shorting plane was placed in the waveguide just past the holes 

in order that the electric field pattern (a standing wave) in the guide 

could be adjusted so that relative maxima would be opposite the coupling 

holes. Since the holes are one-half wavelength apart, the field there 

will be of similar magnitude but out of phase by 180 degrees. Thus, 

there will be a tendency to excite the desired TÊ ^̂  mode and to reject 

the unwanted TM̂ ^̂  mode. Recall that the two modes are degenerate in 

the solid wall configuration. 
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Figure 4.1. Experimental trapped-mode resonator (exploded view) 
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A trapped-mode structure was formed by replacing internal plates 

in the stack with spacers located at the corners. The spacers are 

made from material of the same thickness as the internal plates. In 

this way the axial length was kept constant. Three configurations 

were considered in the measurement program. Referring to Figure 4.1, 

one configuration was with plates numbered 1 and 5 replaced with 

spacers (called the semi-open configuration). The second configuration 

was with plates numbered 1, 2, 4, and 5 replaced with spacers (full-

open configuration). The third configuration was that of the closed 

resonator (closed configuration). Figure 4.2 shows the assembled 

resonator in the semi-open configuration with the coupling structure 

attached. 

It is important to insure that the radial dimension of the cutoff 

waveguide sections is great enough that there will not be significant 

field strength at the outer extremity of the plates* To that end, con­

sider for the moment that instead of being square, the plates are 

circular with a radius b = 2a where a is the radius of the hole in the 

plates. The axial length of the resonator will be denoted d and the 

thickness of the radial waveguide sections as t. (This notation is 

consistent with that used in Appendix A.) 

Fcllcwing the variational formulation developed in Appendix A, 

the electric field intensity in the cutoff radial section near z = d is 

given by 

00 

Ê (r=b) = (L/IA/LT)) J k̂ sin(nn(z-d+t)/t) K̂ K̂gb)/K̂ (K̂ a). 

(4.1.1) 
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Figure 4.2. Assembled experimental trapped-mode resonator 
(semi-open configuration) with coupling structure 

attached. 
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The electric field intensity in the other cutoff radial section is 

similar to that given by Equation 4.1.1 except for changes of algebraic 

signs for some values of n. These expressions assume that there is no 

reflection of energy at r = b or that all of the electric field at 

r = b contributes to radiation of energy away from the resonator. 

The power density at r = b is given by |e| /n where n is the 

H 
intrinsic impedance of free space and is equal to (y /e ) . Intégrât-

0 0 

ing this quantity over the surfaces where the electric field exists 

gives the power radiated from the nth order cutoff radial waveguide 

mode. With the use of the equation for from Appendix. A, the result is 

riïï a (n -(t/d) ) 

(4.1.2) 

where is given by Equation A.3. 

Calculation of the energy stored in the resonator by the techiques 

of Appendix A shows that essentially all of the energy is in the cylin­

drical volume and almost none in the cutoff radial sections. With a 

normalization which is consistent with Equation 4.1.1, the energy stored 

in the cylindrical volume may be shown to be 

W = 2Wg = d. (4.1.3) 

Finally, on the basis that the radiative loss is the only loss in 

the resonator, the quality factor may be formulated by the use of Equa­

tions 4.1.2 and 4.1.3 in Equation 2.1.1. The results for the first 

three ordered modes for the dimension t equal to 0.2d and 0.4d (corre­

sponding to the semi- and full-open configurations, respectively» are 
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listed In Table 4.1. In all instances the quality factors listed are 

much larger than those due to the conductor losses so that radiation 

will be expected to produce negligible affect upon the measurements. 

Table 4.1. Quality factors due to radiative effects 

T/d M Q due to radiation 

0.2 1 1.1 X 10̂  ̂

0.2 2 7.1 X 10̂ 9 

0.2 3 2.3 X 10̂ 4 

0.4 1 4.1 X 10̂ * 

0.4 2 2.2 X 10̂ 4 

0.4 3 8.3 X 10̂ 1 

B. Measurement Technique 

A laboratory set-up which is appropriate for the measurement of 

the quality factor of the various resonator configurations is shown 

schematically in Figure 4.3. The operation of the equipment is such 

that signals of similar magnitude and phase are applied to the reference 

and unknown loads. The signals reflected from the loads are sensed and 

compared by means of the microwave network analyzer—a device which may 

be used to determine the complex ratio of two high frequency signals. 

This apparatus comprises a reflectometer. 

When operated as a measuring instrument the unknown load is the 

resonator under test and the reference load is a short circuit. The 

quantity displayed by the network analyzer in this situation is the 



www.manaraa.com

46 

similar 
directional 
couplers 

source 

reference 
load 

test 
load 

network 
analyzer 

Figure 4.3. Basic experimental arrangement 
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reflection coefficient. In order to facilitate calibration of the 

measurement apparatus, the short circuit is a movable one in order that 

its position MAY be adjusted to correspond to the input port of the 

resonator in the measurement branch. Adjustment of this short circuit 

may be achieved by temporarily detuning the resonator under test and 

then positioning the short circuit so that equal signals are returned 

by both the test and measurement channels of the network analyzer. 

Further, since the measurements are to be taken over a range of 

frequencies around the resonant frequency for each configuration of 

the resonator, and since the propagation of electromagnetic energy in 

waveguides is inherently dispersive, the reference and test channels 

must be physically symmetric if the measurements are to be correct at 

more than one frequency. 

The particular equipment arrangement actually used is shown 

schematically in Figure 4.4. While this arrangement is operationally 

the same as is the arrangement shown in Figure 4.3, details of a 

practical laboratory set-up are included. Figure 4.5 shows the equip­

ment as it appeared in the laboratory. 

Since the particular coupling structure used provided very light 

coupling to the resonator under test, the phase of the reflection 

coefficient changed very little as the frequency of the signal which 

was applied to the cavity passes through resonance. Therefore, the 

data collected was on the basis of changes in the magnitude of the 

reflection coefficient around resonance. Ginzton (12) discusses 

considerations of quality factor data treatment at length and his 

comments are the basis of the experimental procedure used. 
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Figure 4.4. Detailed experimental arrangement 



www.manaraa.com

49 

Figure 4.5. Actual laboratory arrangement. The frequency 
counter used for the measurements is not shown. 
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V. COMPARISON OF THEORETICAL AND EXPERIMENTAL DATA 

In the preceding sections, analytical and experimental techniques 

which may be applied to trapped-mode resonators have been described. 

In order to provide comparison of experimental and the various analyt­

ical results for the various example resonator configurations which do 

not permit solution in closed form, corresponding physical dimensions 

were considered. (The details of the analyses of the specific example 

resonator are described in Appendices A and B.) 

Figures 5.1 and 5.2 shows the resonant frequency data and Figures 

5.3 and 5.4 show the corresponding quality factor data for the finite-

difference and variational analyses and that from the corresponding 

laboratory measurements. For both figures, the abscissa is the thick­

ness of one (of the two) radial waveguides divided by the axial length 

of the resonator. The data is given in tabular form in Table 5.1. The 

finite-difference analysis program used a discretization which divided 

axial and radial dimensions into thirty segments. 

The vertical displacement of the experimental resonant frequency 

data from the analytical results is probably due to erroneous determina­

tion of the physical dimensions of the resonator. (Both analytical 

techniques give essentially the same result for the closed resonator). 

The finite difference result for the resonant frequency of the trapped-

mode resonator corresponds quite well with the experimental data. The 

variation formulation result predict a somewhat larger frequency devia­

tion as a result of opening the cavity than is observed. 
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Finite difference data 

Figure 5.1. Resonant frequency vs. radial waveguide spacing; 
finite-rdifference and experimental data 
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Variational formula data 

Experimental data 

r 
0 

-T r 
0.1 

I 

0 . 2  0.3 0.4 0.5 

Figure 5.2. Resonant frequency vs. radial waveguide spacing: 
variational formulation and experimental data 
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Finite-difference data 

Experimental data 

Figure 5.3. Quality factor data; finite-difference and 
experimental data 
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0 " Variational data normalized 
to frequency variation of 
experimental resonator 

Variational formula data 

Experimental data 

Figure 5.4. Quality factor data: variational formulation and 
experimental data 
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Table 5.1. Analytical and experimental results 

Variational Finite-
formulation difference Experimental 

t/d fr,GHz Q fr,GHz Q fr,GHz Q 

0 9.785 13307 9.781 13306 9.717 8860 

0.05 9.784 13306 — — — 

0.10 9.782 13301 9.780 13372 — 

0.15 9.775 13271 — — — 

0.20 9.756 13179 9.767 13470 9.690 7770 

0.25 9.716 12962 — — —  —— 

0.30 9.642 12529 9.708 13380 — 

0.35 9.518 11762 ——— 

0.40 9.326 10551 9.550 12751 9.474 6530 

0.45 9.047 8846 ——— 

As is not unusual (21), the experimentally determined quality 

factor data is somewhat lower than is predicted. The cause of this 

discrepancy may lie among several possible items including incorrect 

wall material surface resistance characterization, lack of considera­

tion of surface roughness or porosity (18), and unavoidable uncertainty 

in the measurement procedure. 

One explanation which might account for the drop of experimental 

Q (as compared to the finite-difference result) might be that the 

radial cutoff waveguide sections in the experimental resonator were 
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not long enough to effect a complete reflection of the energy which 

entered them, thereby permitting some radiation from the resonator 

for the open configurations. For this to be true, however, the 

approximate calculations in the previous section would have to be 

greatly in error. 

Figure 5.4 also shows two data points which correspond to a 

modification of the accompanying variational formulation data. The 

Q data is modified by using the resonant frequency data from the 

finite difference analysis. The result tends to indicate an increase 

in quality factor for larger values of t/d. 
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VI. SUMMARY AND CONCLUSION 

Various aspects of the solution of trapped-mode resonators in 

both closed-form and approximate lossless formulations have been dis­

cussed and perturbation calculations for small wall-losses given. 

Examples of rectangular and cylindrical closed resonators were 

compared to trapped-mode counterparts which were formed from the 

closed resonators by replacing part of the conducting boundaries 

with waveguides operating below cutoff. Conductor losses were com­

pared for the closed and trapped-mode configurations at the same 

resonant frequency. The quality factor for the trapped-mode structure 

was found to be higher than that for the corresponding closed resonator 

for both of the geometries. Thus, the possibility of trapped-mode 

resonators with lower conductor losses than similar solid-wall resona­

tors was established. 

For those trapped-mode configurations which do not admit to exact 

lossless electromagnetic field solution, two approximate techniques 

were investigated. The first of these techniques was the establishment 

of a stationary variational formula for the square of the complex 

angular resonant frequency. The derivation used the reaction concept 

and was in terms of a trial electric field intensity which meets loss­

less boundary conditions at conducting surfaces. The possibility of 

discontinuity in the tangential electric field intensity within the 

resonator and upon the resonator boundary was included to permit easier 

formulation of a trial field. Effects of small conductor leases at 

resonator boundaries were also Included. 
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The second approximate solution technique was that of a finite-

difference formulation of the lossless electromagnetic field problem 

and the calculation of the corresponding small conductor losses. 

Details of the actual finite-difference problem formulation were 

considered and, in an Appendix, construction of a specific digital 

computer program was given. 

The analysis of a specific trapped-mode resonator example was 

executed using the two approximate techniques which were investigated 

and the results compared with laboratory data for a similar resonator. 

In that comparison, the correlation of resonant frequency data for 

the finite-difference solution and the experimental resonator was 

very high. The corresponding variational formulation did not give 

quite as good results, however, at least for the situation where the 

trial field became a poorer approximation of the true field. This 

situation is not unexpected in that it is the nature of a variational 

formula to establish an upper or lower bound on the parameter which 

is being expressed. 

Comparison of quality factor data for the two approximate techniques 

and the laboratory data was also made. The finite difference result 

indicated that the quality factor for the example resonator would be 

relatively insensitive to changes in the particular resonator structure. 

The variational formula result for the same resonator Indicated that 

the Q should decrease as the size of the cutoff waveguide sections was 

increased. This latter result is biased, however, by the fact that the 

variational calculation of the resonant frequency predicted a somewhat 
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lowîr value than was experienced in the laboratory. The corresponding 

laboratory data indicated the decrease of quality factor as the cutoff 

waveguide dimension was increased. Uncertainty in the characterization 

of the resistance, roughness, and porosity of the wall material in the 

laboratory resonator prevented the absolute comparison of this data 

with the analytical results. 



www.manaraa.com

60 

VII. LITERATURE CITED 

1. Adler, R. B., L. J. Chu, and R. M. Fano. Electromagnetic energy 
transmission and radiation. New York, N.Y., John Wiley and Sons, 
Inc. 1960. 

2. Beaubein, M. J. and A.Wexler. An accurate finite-difference method 
for higher order waveguide modes. IEEE Transactions on Microwave 
Theory and Techniques MIT-16, Number 12: 1007-1017. 1968. 

3. Beaubein, M. J. and A. Wexler. Unequal-arm finite-difference oper­
ators in the positive-definite successive over-relaxation algorithm. 
IEEE Transactions on Microwave Theory and Techniques MTT-18, Number 
12: 1132-1149. 1970. 

4. Berk, A. D. Variational principles for electromagnetic resonators 
and waveguides. IEEE Transactions on Antennas and Propagation AP-4, 
Number 2: 104-110. 1956, 

5. Brown, R. G., R. A. Sharpe, and W. L. Hughes. Lines, waves, and 
antennas. New York, N.Y., the Ronald Press Company. 1961. 

6. Bryant, G. H. Propagation in corrugated waveguides. IEEE Proceed­
ings 116, Number 2: 203-213. 1969. 

7. Carre, B. A. The determination of the optimum accelerating factor 
for successive overrelaxation. Computer Journal 4, Number 1: 73. 
1961. 

8. Davies, J. B. and C. A. Muilwyk. Numerical solution of uniform 
hollow waveguides with boundaries of arbitrary shapet IEEE Proceed­
ings 113, Number 2: 277-284. 1966. 

9. Finkbeiner, D. T. Matrices and linear transformations. San 
Francisco, Calif., W. H. Freeman and Company. 1960. 

10. Forsythe, G. E. and W. R. Wasow. Finite-difference methods for 
partial differential equations. New York, N.Y., John Wiley and 
Sons, Inc. 1960. 

11. Gent, A. W. The attenuation and propagation factor of spaced-dlsc 
circular waveguide. IEEE Proceedings 106, Number 1: 37-46. 1959. 

12. Ginzton, E. L. Microwave measurements. New York, N.Y., McGraw-
Hill Book Company, Inc. 1957. 

13. Harrington, R, F. Time-harmonic electromagnetic fields. 1st ed. 
New York, N.Y., McGraw-Hill Book Company, Inc. 1961. 



www.manaraa.com

61 

14. Harrington, R. F. Matrix methods for field problems. IEEE Proceed­
ings 55, Number 2: 136-148. 1967. 

15. Harrington, R. F. Field computation by moment methods. New York, 
N.Y., The Macmillan Company. 1968. 

16. Hildebrand, F. B. Methods of applied mathematics. Englewood Cliffs, 
N.J., Prentice-Hall, Inc. 1952. 

17. Jahnke, E. and F. Emde. Tables of functions. 4th ed. New York, 
N.Y., Dover Publications. 1945. 

18. Lending, R. D. New criteria for microwave component surfaces. 
National Electronics Conference Proceedings 11; 391-401. 1955. 

19. Marcatili, E. A. Heat loss in grooved metalic surface. IEEE Pro­
ceedings 45: 1134. 1957. 

20. Matthaei, G. L. and D. B. Weller. Circular TÊ .-mode, trapped-
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IX. APPENDIX A: 

VARIATIONAL FORMULATION EXAMPLE 

The purpose of this example is to illustrate the utilization of 

the variational formula developed in this thesis to analyze the resonator 

which was tested in the laboratory. It should be noted in passing that 

the chosen trial field is only one of many possible choices and may or 

may not be the "best" possible choice. The requirements on the trial 

field are given in detail in the body of this thesis. 

As a trial field take the field within that region which corresponds 

to the closed resonator volume to be the field for a closed resonator. 

Namely, for r £ a (region 1) 

E,j)ĵ  = sin(nz/d)Ĵ (3.832r/a). (A.l) 

In the radial section where r _> a (region 2), assume 

00 

E,, = y h .sin(nïï(2-ẑ )/t)K̂ (K_r) (A.2) 
1 m X X il n=l 

where ĥ  ̂is the amplitude of the nth order mode in the ith radial sec­

tion (i = 1 in the section near the z • 0 end of the trapped-mode 

resonator and i = 2 in the section at the z = d end.), = 0, ẑ  = 

d - t, t is the spacing of the cutoff radial waveguide sections, and 

K is determined from the separation equation for the cutoff region as 

K " ((rnr/t)̂  - 01̂ # e )̂ . (A.3) 
" 0 0 0 

Continuity of tangential magnetic field intensity at r » a gives 
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h 
-3.832Jq(3.832) 2 nd̂  

[sin(Trẑ /d) 
ni 

- cos(nïï)8in(ïï(ẑ  + t)/d)]. (A.4) 

Using the trial field expressed by Equation À.1 and Equation A.2 

2 
as supplemented by Equations Â.3 and A.4, the complex value of w may 

now be evaluated by use of Equation 3.2.17. Useful relationships which 

are pertinent to the detailed calculations are given in References 17 

and 30. The result is 

(A. 5) U) = 

where 

- d((%/d)2 + (3.832/a)2)/2 + 

+ t I k̂ [(l - (K,/K„)Sa)?y e + (mT/t)̂ (2/K_a)(K,/Kj] 
n  x O u Q Q  1 1  X V /  n=i 

00 

±2 = (2t/a) I 

i. . 2(7r/d)̂  + ((3,832)̂ /â )(d-2t+(d/7r)sin(27rt/d)) 

CO 00 

+ (2n/at)̂  I  ̂ mnk̂ k̂ (l+(-l)"̂ )* 
mal n"l 

a IL (k a) K, (k a) 
. [K - K X_n_3 

"n - ""m 
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and 

r 2 2 
» d/2 + t I (1 + (2/K̂ a)(K̂ /KQ) - (K̂ /Kq)̂ ) 

n*l 

where 

n n d -t 

The term (K̂ /Kg) is used to denote (K̂ (K̂ a)/KQ(K̂ a)), an expression 

which is known (23). The term î  is of indeterminant form when m = n 

and may be resolved by use of L'hospital's rule or by evaluating the 

appropriate integral for this situation. 

The complex resonant frequency squared is now determined for the 

above choice of trial field and may be evaluated conveniently by means 

of a digital computer program with the summations truncated at an 

appropriate upper index. 

If the complex angular frequency w is separated into real and 

imaginary parts as w = u)̂ + j then 

J- = (0)2 _ 01̂ ) + j2(D̂ ŵ  = (A.6) 

For high Q situations (13),  ̂ and 

Q- |(w2)̂ /(ŵ )ĵ | (A.7) 

which is the desired result for comparison of quality factor data. 

It should be noted that if the trial field becomes the exact solu­

tion then Equation A.7 is essentially the same result as would be 

obtained from the usual perturbation analysis except that the real 
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2 
part of w will reflect a change in the resonant frequency which is 

2 
due to the presence of losses. Also, since w is stationary (possess­

ing a saddle point at p = 0 (13)), the quality factor expressed by 

Equation Â.7 is also stationary. 
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X. APPENDIX B 

CONSTRUCTION OF THE FINITE-DIFFERENCE ANALYSIS PROGRAM 

The purpose of this program is to solve Maxwell's equations for a 

linear, homogeneous, source-free region 

9 X E = -Vi9H/3t (B.la) 

7 X H = e3E/3t (B.lb) 

subject to appropriate boundary conditions on conducting surfaces and to 

calculate the quality factor corresponding to the field solution. The 

particular geometry of interest is that described in Section IV-A of 

this thesis. Time dependence of the form exp(ja)t) will be assumed im­

plicitly and suppressed in the usual way. Thus Equations B.l become 

2 X E = -jwpH (B.2a) 

2 X H = (B.2b) 

One general approach to solving Equations B.2 which has enjoyed 

some popularity in both continuous (13) and discrete (2, 3, 8) applica­

tions is to postulate a (scalar) potential function which is constrained 

by either Dirichlet of Neumann boundary conditions (as is dictated by 

the nature of the electromagnetic field solution desired) and derive ̂  

and H from the potential. 

The approach here is somewhat more specific in that the electric 

field will be the quantity which is to be solved for and the magnetic 
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field determined from It by use of Equation B.2a. This technique, while 

somewhat less general, Is useful in that less derivatives need to be 

evaluated to determine the complete electromagnetic field solution than 

in the method using a potential field. 

The magnetic field intensity may be eliminated from Equations B.2 

to get 

2 X X E) = (ô yê . (B.3) 

If E is constrained to have only a -̂component (in a right-cylindrical 

coordinate system r,0,z such as is Indicated in Figure 2.3) then Equa­

tion B.3 reduces to a scalar partial differential equation. Namely, 

3̂ E. 1 3E. E. 3̂ E. , 
1  +  i  _  - i .  +  — m  p e E  =  0 .  ( B . 4 )  

3p p 3p p 3z 

2 
The term to pe is identifiable as the eigenvalue and will hereafter be 

denoted as X. 

If the derivatives are written in a form which is in terms of limits 

as h and k (used here to denote incremental lengths in the r- and z-

coordinate directions, respectively) approach zero and Equation B.4 

written in the form LÊ  = àÊ , then the problem may be expressed in 

discrete form. The discrete form of T. (denoted L̂ ) is given by 

hS ' E*(r,z)(2/ĥ  + 2/kf + 1/r̂ ) - Ê (r+h,z) (1/ĥ  + l/2rh) 

- Ê (r-h,z)(l/ĥ  - l/2rh) - Ê (r,z+k)(1/k̂ ) 

- Ê (r,z-k)(l/k̂ ). (B.5) 
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The desired relaxation formula is determined by equating to 

XÊ  and solving for Ê (r,z) in terms of the neighboring field values. 

The result is the relaxation formula R where 

Ê (r,z) = R(Ê ) 

= [Ê (r+h,z)(l/ĥ  + l/2rh) 

+ Ê (r-h,z)(1/ĥ  - l/2rh) 

+ E.(r,z+k)(l/k̂ ) 
9 

+ E,(r,z-k)(l/k̂ )]/(2/ĥ  + 2/k̂  + 1/r̂  - \). 
<P 

(B.6) 

An algorithm which permits unequal length distances between central and 

neighboring field values in a given coordinate direction, thereby per­

mitting more arbitrary boundaries is given by Beaubein and Wexler (3). 

The application of this formula is to an array of discrete data 

points which correspond to electric field intensity values within the 

resonator.' The boundary of the resonator is described on a surface of 

constant angular variable with the values of (tangential) electric 

field at conductors being zero. The boundary condition in the cutoff 

radial waveguide for large values of the radial dimension r is approxi­

mated by forcing Ê (r"4a,z) equal to zero. This is not an unfair 

approximation in that it reasonably represents the behavior of evanescent 

fields there. 

Reduction of storage space is achieved by forcing symmetry about 

z = d/2. Further reduction is achieved by noting that continuity of 
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tangential electric field intensity and the lack of -̂dependence in the 

field forces to be zero at r = 0. Thus only the section for 0<r<_4a, 

0£z£d/2 is considered. 

Equation B.6 is applied sequentially to each of the internal points 

(with Ê (r,d/2 + k) set equal to Ê (r,d/2 - k)) several times with a 

guessed value for X. Then, a new value for X is estimated by using a 

discrete form of the Rayleigh quotient. Namely, 

X = - Z E.L.E./E Ê  (B.7) 
9 d <p 9 

where E implies summation over all of the field points. Equation B.6 

is again applied repeatedly as above until \ converges to within some 

predetermined tolerence. 

The convergence of X will be hastened somewhat if some acceleration 

is used. The form of the accelerated relaxation formula is 

Ê (r,z) = eR(Ê ) + (1 - e)Ê (r,z). (B.8) 

Ê (r,z) on the left side of this equation is interpreted as being the 

new value being found by the relaxation whereas on the right side it is 

interpreted as being the value which existed before the application of 

the accelerated relaxation formula. The accelerating factor 3 may 

assume values between 0 and 2, A value of 0 gives total deceleration 

(no change in E ), a value of 1 gives no acceleration (compare Equation 

B.8 with 0 • 1 to Equation B.6), and a value of 2 gives total accelera­

tion (unstable). Carre (7) gives a method for finding the optimum value 

of the accelerating factor, although the method used for this example 
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was to simply pick a value. Generally, the value used was in the range 

of 1.5 to 1.8. 

After the convergence of \ is ascertained, the field is relaxed 

(i.e., Equation B.8 is applied to the array of points) several times 

with 6 = 1.0 in order to insure the convergence of the field values. 

It should be noted that the eigenvalue converges somewhat faster than 

does the field in that the Rayleigh quotient is a stationary form. The 

procedure just described is similar to that of Davies and Muilwyk (8). 

Because the introduction of the reentrant corner at the juction of 

the cutoff radial waveguide and the cylindrical surface of the resonator 

generates a situation wherein high conduction current may exist (and 

hence locally high losses), the electric field in that region was 

expanded using the method of Whiting (33) in an effort to achieve good 

accuracy there. This method uses a cylindrical modal expansion in the 

vicinity of a reentrant comer. Whiting's work is for the solution of 

Laplace's equation although comparison of his expansion with the con­

tinuous solution for the electromagnetic field in the vicinity of a 

comer as given by Harrington (13) shows that the same technique is 

valid for the solution of the Helmholtz equation being considered here. 

There is one approximation made here in that the expansion is strictly 

applied about a straight-line axis but the geometry used here is such 

that the expansion is made about a curved line. The approximation is 

justified on the basis that the radius of the region over which the 

expansion is used is kept somewhat smaller than the radius of curvature 

of the closed resonator boundary. 
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This modal expansion is used both during the relaxation process (in 

order to achieve accuracy without the slow execution penalty resulting 

from a very fine mesh) and in the calculation of the energy storage and 

losses in the vicinity of the reentrant corner. These latter calcula­

tions are facilitated by using Equation B.2a on each of the modal expan­

sion coefficients with the normalization that -jtoji = 1. This normaliza­

tion results in no loss of generality in that the same normalization is 

used for the finite difference calculations. 

At points away from the reentrant corner, a finite difference form 

of Equation B.2a is used to calculate the r- and z-directed components 

of the magnetic field intensity. The calculation is implemented in such 

a way that the magnitude squared of the magnetic field is calculated and 

stored in an array which overlaps that used to store the electric field 

intensity array. Thus only a small amount of additional storage area 

in the computer is required. 

In order to provide a facility to permit easy examination of compu­

ter output of the electric of magnetic field array values and to provide 

information for the evaluation of quality factor data, a subroutine for 

normalization of the arrays involved was included. The subroutine will 

normalize either the electric or magnetic field squared arrays with re­

spect to either a supplied normalization factor or with respect to the 

largest element in the array to be normalized. 

Finally the quality factor is determined by performing summations 

of the magnetic field intensity squared array to provide results which 

are approximations of the surface and volume integrations which are 
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required to evaluate an appropriate expression for the quality factor 

such as that given by Equation 2,2.6. 

A listing of the specific main program and various subroutines 

used in the finite difference analysis of the example resonator and 

a brief description of the usage of each is given in Appendix C. 
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XI. APPENDIX C: 

FINITE-DIFFERENCE ANALYSIS PROGRAM 

The Fortran program listed on the following pages was compiled 

under the "H" option Fortran compiler at the Iowa State University 

Computation Center. By the use of overlays at the linkage editor 

step of the program execution, the listed program will run in 128K 

bytes of main core storage, providing as much as the equivalent of 

101 X 101 field points in the constant (}) section of the closed 

cylindrical resonator geometry. 
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c MAIN 
C PROGRAM MAIN MAIN 
C MAIN 
C PROGRAM MAIN IS THE PRIMARY CALLING PROGRAM FOR THE FINITE MAIN 
C DIFFERENCE ANALYSIS OF THE EXAMPLE TRAPPED MODE RESONATOR. ITS MAIN 
C PURPOSE IS TO CALL THE SUBROUTINES WHICH EXECUTE THE ANALYSIS. MAIN 
C THE PURPOSE OF THIS ORGANIZATION IS TO PERMIT RUNNING THE MAIN 
C COMPILED PROGRAM IN 12BK BYTES OF MEMORY BY USE OF OVERLAYS AT MAIN 
C THE LINKAGE EDITOR STEP. THE OBJECT DECKS WERE COMPILED USING MAIN 
C H- LEVEL FORTRAN ON THE I .S.U. 360/65 (IBM» COMPUTER. MAIN 
C MAIN 
C SUBROUTINES USED: MAIN 
C MAIN 
C ONE MAIN 
C TWO MAIN 
C MAIN 
C MAIN 
5 CALL 0NE<A,D,RC,I0,M,KMAX,AFK,ICSTRT,ICEND,ICSTEP,KMAX1,T0L, MAIN 

1 KCONV,AF,DM,U,TERM,DEE,NSTOP) MAIN 
CALL TWO(A,D,RC,IO,N,KMAX,AFK,ICSTRT,ICEND,ICSTEP,KMAXI,TOL, MAIN 

1 KCONV,AF,DM,U,TERM,DEE) MAIN 
IF(NSTOP.NE.OI GO TO 5 MAIN 
STOP MAIN 
END MAIN 
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c ONE 
C SUBROUTINE ONE(A,0,I0,L,KMAX,AFK,ICSTRTtICENO,ICSTEP,KMAX1,TOL, ONE 
C KCONV,AF,I)M,U,TERM,DEE,NSTOP) ONE 
C ONE 
C SUBROUTINE ONE SERVES TO INITIATE VARIOUS DATA AND CONSTANTS. ONE 
C ONE 
C PARAMETERS USED: ONE 
C ONE 
G A -  RADIUS OF RESONATOR IN INCHES ONE 
C D -  AXIAL LENGTH OF RESONATOR IN INCHES ONE 
C RC -  SURFACE RESISTANCE COEFFICIENT FOR THE WALL MATERIAL ONE 
C BEING CONSIDERED ONE 
C 10 -  ORDER OF THE MESH TO BE USED IN THE FINITE DIFFERENCE ONE 
C ARRAY ONE 
C L -  NUMBER OF TIMES THE RELAXATION ALGORITHM IS TO BE APPLIED ONE 
C TO THE ARRAY BEFORE A NEW VALUE FOR THE RAYLEIGH QUOTIENT ONE 
C IS EVALUATED ONE 
G KMAX -  NUMBER OF TIMES THE RAYLEIGH QUOTIENT IS TO BE ONE 
C DETERMINED WITH THE ACCELERATION FACTOR EQUAL TO AFK ONE 
C AFK -  (SEE KMAX, ABOVE) ONE 
C ICSTRT,ICEND,ICSTEP -  PARAMETERS GIVING THE BEGINNING, ENDING, ONE 
C AND INTERMEDIATE INCREMENTS ONE 
C (RESPECTIVELY) FOR THE LOCATION OF THE ONE 
C REENTRANT CORNER OF THE RADIAL SECTION; ONE 
C NOTE THAT IF ICSTRT=1, THE FIRST ONE 
C CALCULATION CORRESPONDS TO A CLOSED ONE 
C RESONATOR ONE 
C KMAXl -  NUMBER OF TIMES THAT THE TOLERANCE ON THE EIGENVALUE ONE 
C CONVERGENCE MUST BE REPEATED BEFORE THE ACCELERATION ONE 
C FACTOR IS CHANGED FROM AFK TO UNITY ONE 
C TOL -  TOLERENCE ON EIGENVALUE CONVERGENCE ONE 
C KCONV -  NUMBER OF TIMES THAT THE RAYLEIGH QUOTIENT IS TO BE ONE 
C DETERMINED WITH UNITY ACCELERATION FACTOR (AFTER KMAX ONE 
C CALCULATIONS OR AFTER THE EIGENVALUE HAS REACHED THE ONE 
C DESIRED TOLERENCE ON ITS CONVERGENCE) ONE 
C AF -  ACCELERATING FACTOR FOR INITIAL RELAXATION ONE 
C DM,U,TERM,DEE -  VARIABLES INITIALIZED IN THIS SUBROUTINE AND ONE 
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PRINT 303 
PRINT 302V ((EXPAND(M,N»1N = 1,5),M 
PRINT 304 
PRINT 302,,  {  (EXPAND CM,N» , .N = 1,51,M 
PRINT 305 
PRINT 302 1, (  (  ANSWER(M,N) 1 N = 1,5),  M 
T1 = (PI/BRI**2 
TERM = (1« + T1)/(4.*(T1 + .5*D/A)I 
DEE = FLOAT(lO-l)  
RETURN 
END 

ONE 
ONE 
ONE 
ONE 
ONE 
ONE 
ONE 
ONE 
ONE 
ONE 
ONE 
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c GEOM 
C SUBROUTINE GEOM(HZ,HR) GEOM 
C GEOM 
C SUBROUTINE GEOM CALCULATES THE COEFFICIENTS FOR THE EVALUATION OF GEOM 
C THE ELECTRIC FIELD, ENERGY STORAGE, AND POWER DISSIPATION AT THE GEOM 
C REENTRANT CORNER. GEOM 
C GEOM 
C PARAMETERS USED: GEOM 
C GEOM 
C HZ -  AXIAL MESH SPACING GEOM 
C HR -  RACIAL MESH SPACING. GEOM 
C GEOM 
C SUBROUTINES USED: GEOM 
C GEOM 
C DUMNV (A LOCALLY SUPPLIED DOUBLE PRECISION MATRIX INVERSION GEOM 
C ROUTINE) GEOM 
C GEOM 
C GEOM 

SUBROUTINE GEOM(X,Y) GEOM 
COMMON /C0RNER/EMM(5,5),EXPAND(5,5),C(5 »,RESULT(5,5),ANSWER(5,51 GEOM 
DOUBLE PRECISION DATAN,DSIN,DSQRT,DFLOAT,DBLE GEOM 
REAL*8 XH,YH,PI,BIGM(5,5»,SMALLM(5,5J,PROD(5,5),A(5J,R{51,L(5J GEOM 
REAL*8 M(51,TW023,D,RI,AI GEOM 
PI = 3.  141592653589793 GEOM 
XH = DBLE(X) GEOM 
YH = DBLE(Y) GEOM 
Ad ) DATAN(YH/XH) GEOM 
A(2) PI/2.D00 GEOM 
A(3) PI -  Ad) GEOM 
A(4) S PI GEOM 
A<5) PI + ACl) GEOM 
R(l)  = DSQRT(XH**2 + YH*f2) GEOM 
R(2) YH GEOM 
R(3J R(l)  GEOM 
R(4I XH GEOM 
R(5I Rd) GEOM 
00 1 I = 1,5 GEOM 
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RI = R{IJ*»(2.D00/3.D00) GEOM 
AI = A(I»*2,DOO/3.DOO GEOM 
TW023 = 2.000**(2.00O/3.DOO) GEOM 
DO 1 J = 1,5 GEOM 
SMALLM(I,J) = (RI**JÏ*DS1N(AI*0FL0AT(J)) GEOM 

1 B1GM(I»J> = SMALLM(I,j;*4TW023**j; GEOM 
CALL OUMNV (BIGM,5t5,0tL,M) GEOM 
DO 2 I = 1,5 GEOM 
00 2 J = 1,5 GEOM 
PRODd, J» = O.DOO GEOM 
DO 2 K = 1,5 . GEOM 

2 PRODd,J) = PRODd,Jl + SMALLM(I,KI*BIGM(K,J) GEOM 
DO 3 I = 1,5 GEOM 
DO 3 J = 1,5 GEOM 
EXPANDd,JJ = SNGL(BIGMd, J )  )  GEOM 

3 EMM(I,J) = SNGL(PRODd,JM GEOM 
RETURN GEOM 
END GEOM 



www.manaraa.com

c NTGRT 
C SUBROUTINE NTGRT NTGRT 
C NTGRT 
C SUBROUTINE NTGRT PERFORMS NUMERICAL INTEGRATIONS TO EVALUATE NTGRT 
C ENERGY STORAGE AND POWER DISSIPATION FROM FINITE DIFFERENCE DATA NTGRT 
C IN THE VICINITY OF T H E  REENTRANT CORNER IN TERMS OF THE MESH NTGRT 
C DIMENSIONS HR AND HZ, NTGRT 
C NTGRT 
C NTGRT 

SUBROUTINE NTGRT NTGRT 
COMMON /FIELD/H2(51,402)/C0NST/PI,BR/PARAM/HR,HZ,BK NTGRT 
COMMON /CORNER/EMM15,5),EXPAND(5,5),C(5),RESULT(5,5),ANSWER(5,5) NTGRT 
DIMENSION R(301),C0SINE(4,301) NTGRT 
EQUIVALENCE (R(U,H2(1,1 »),(COSINE(1,1),H2(1,7H NTGRT 
ANGLED = ATAN{HR/HZ) NTGRT 
CANG = PI/2.  -  ANGLEO NTGRT 
OA = ANGLE0/5d. NTGRT 
DC = CANG/50. NTGRT 
R23X = (HZ/2.)**(2./3.)  NTGRT 
R23Y = (HR/2.l**€2./3.)  NTGRT 
DO 7001 INCR = 1b51 NTGRT 
AI = DA*T=L0AT(INCR-1 )  NTGRT 
A2 = PI / 2 .  -  FL0AT(INCR-:L)*DC NTGRT 
A3 = PI / 2 .  + FLOAT( INCR- ;i l*DC N T G R T  
RA = R23>C/(C0S(A1»#*(2./3.I  ) NTGRT 
RB = R23V/(SIN(A2)**(2./3.n NTGRT 
R(INCR) « RA NTGRT 
R(102 -  ][NCR) = RB NTGRT 
RCINCR + 100) = RB NTGRT 
R(202 -  IINCR) = RA NTGRT 
RdNCR + 200) = RA NTGRT 
R(302 -  ;INCR) = RB NTGRT 
DO 7001 MMN = 1,4 NTGRT 
CNST = 2.*FL0AT(MMN)/3. ,  NTGRT 
COSINE(MMN,INCR) = COS* CNST*A1) NTGRT 
C0SINE(MMN,102-INCR) = COS( CNST*A2) NTGRT 
C0SINE (MMN,100+INCRÏ = COSC CNST*A3) NTGRT 
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c TWO 
C SUBROUTINE TWO{A,D,10,M,KMAX,AFK,ICSTRT,ICEND,ICSTEP,KMAXl,TOL, TWO 
C KCONV,AF,BM,U,TERM,DEEI TWO 
C TWO 
C SUBROUTINE TWO CALLS THE VARIOUS SUBROUTINES USED IN THE FINITE TWO 
C DIFFERENCE SOLUTION AND PUTPUTS THE RESULTS. TWO 
C TWO 
C PARAMETERS USED: TWO 
C TWO 
C A -  RADIUS OF RESONATOR IN INCHES TWO 
C D -  AXIAL LENGTH OF RESONATOR IN INCHES TWO 
C RC -  SURFACE RESISTANCE COEFFICIENT FOR THE WALL MATERIAL TWO 
C BEING CONSIDERED TWO 
C 10 -  ORDER OF THE MES-H TO BE USED IN THE FINITE DIFFERENCE TWO 
C ARRAY TWO 
C M -  NUMBER OF TIMES THE RELAXATION ALGORITHM IS TO BE APPLIED TWO 
C TO THE ARRAY BEFORE A NEW VALUE FOR THE RAYLEIGH QUOTIENT TWO 
C IS EVALUATED TWC 
C KMAX -  NUMBER OF TIMES THE RAYLEIGH QUOTIENT IS TO BE TWO 
C DETERMINED WITH THE ACCELERATION FACTOR EQUAL TO AFK TWO 
C AFK -  (SEE KMAX, ABOVE) TWO 
C ICSTRT,ICEND,ÏCSTEP -  PARAMETERS GIVING THE BEGINNING, ENDING, TWO 
C AND INTERMEDIATE INCREMENTS TWO 
C (RESPECTIVELY) FOR THE LOCATION OF THE TWO 
C REENTRANT CORNER OF THE RADIAL SECTION; TWO 
C NOTE THAT IF ICSTRT=1, THE FIRST TWO 
C CALCULATION CORRESPONDS TO A CLOSED TWO 
C RESONATOR TWO 
C KMAXl -  NUMBER OF TIMES THAT THE TOLERANCE ON THE EIGENVALUE TWO 
C CONVERGENCE MUST BE REPEATED BEFORE THE ACCELERATION TWO 
C FACTOR IS CHANGED FROM AFK TO UNITY TWO 
C TOL -  TOLERENCE ON EIGENVALUE CONVERGENCE TWO 
C KCONV -  NUMBER OF TIMES THAT THE RAYLEIGH QUOTIENT IS TO BE TWO 
C DETERMINED WITH UNITY ACCELERATION FACTOR (AFTER KMAX TWO 
C CALCULATIONS OR AFTER THE EIGENVALUE HAS REACHED THE TWO 
C DESIRED TOLERENCE ON ITS CONVERGENCE TWO 
C AF -  ACCELERATING FACTOR FOR INITIAL RELAXATION TWO 
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c DM,U,TERM,DEE -  VARIABLES INITIALIZED IN SUBROUTINE ONE AND TWO 
C CARRIED TO SUBROUTINE TWO. TWO 
C TWO 
C SUBROUTINES USED: TWO 
C TWO 
C INIT TWO 
C RELAX TWO 
C ROLLY TWO 
C SQUARE TWO 
C NORM TWO 
C QUEUE TWO 
C TWO 
G TWO 

SUBROUTINE TWO{A,D,RC,IOvM,KMAX,AFK,ICSTRT,ICEND»ICSTEP,KMAXl,TOL,TWO 
1 KCONV,AF,OM,U,TERM,DEE) TWO 

COMMON /P'ARAM/HR,HZ,XK TWO 
201 FORMATC«lOIMENSIONS OF THE RESONATOR BEING CONSIDERED ARE: RADIUSTWO 

1 =' ,F9.5,'  INCHES'/T53,'LENGTH =',F9.5,'  INCHES «/T53CUTOFF GUIDETWO S 
2 THICKNESS =' ,F9.5,'  INCHES 0R',F8.5,'  TIMES THE LENGTH.')  TWO 

202 FORMATC THE SURFACE RESISTANCE OF THE ASSUMED WALL MATERIAL IS EQTWO 
lUAL TO',IPE12o5,* TIMES THE SQUARE ROOT OF THE FREQUENCY IN HERTZ.TWO 
ZN TWO 

203 FORMATC THE ORDER OF THE ARRAY BEING USED IS' ,14,' . 'I  TWO 
204 FORMATC THE CLOSED CAVITY EIGENVALUE IS' ,IPEl2.5,' .•)  TWO 
205 FORMATC EACH ITERATION BELOW RELAXES THE ARRAY",13,'  TIMES BEFORETWO 

1 A NEW VALUE FOR THE RAYLEIGH QUOTIENT IS CALCULATED.'I TWO 
206 FORMATC THE RESULT OF ITERATION NUMBER',13,'  IS A VALUE 0F',1PE12TW0 

1.5, '  FOR THE RAYLEIGH QUOTIENT. TI^E ACCELERATION FACTOR USED WAS'TWO 
2,0PF5.2,«. 'I  i TWO 

207 FORMATC THE RESULTS OF SUBROUTINE QUEUE ARE: Q=',IPEll .5, ' ,  CQ=',TWO 
1E11.5,' ,  IS=',E11.5,' ,  %V=',E11.5,' ,  CS=',E11.5,«,  CV=',E11.5,' . ' )TW0 

208 FORMATC THE THEORETICAL CLOSED CAVITY QUALITY FACTOR IS',1PE12.5,TWO 
1 ».  M TWO 

209 FORMATC THE QUALITY FACTOR FROM FINITE DIFFERENCE DATA FOR THE RETWO 
ISONATOR CONSIDERED IS',1PE12.5,' . 'J TWO 

210 FORMATC THE THEORETICAL CLOSED CAVITY RESONANT FREQUENCY IS',1PE1TW0 
12.5,'  MEGAHERTZ.'I TWO 
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211 FORMATC THE RESONANT FREQUENCY FROM FINITE DIFFERENCE DATA FOR THTWO 
IE RESONATOR CONSIDERED IS•,1PE12.5,•  MEGAHERTZ.')  TWO 

212 FORMATf' •» TWO 
213 FORMAT('l';  TWO 

F(X,DI = SQRT(XI*3.E8/(6.283185*0) TWO 
QF(Q,X,F,R,U) =Q*SQRT(X)*3.E8*U/(R*SQRT(F)) TWO 
DO 1 IC = ICSTRT,ICEND,ICSTEP TWO 
TEEI = FLOAT*IC-1)/DEE TWO 
TEE = TEEI*D TWO 
PRINT 201,  A,D,TEE,TEEI TWO 
PRINT 202,  RC TWO 
PRINT 203,  10 TWO 
CALL INIT(IO) TWO 
PRINT 204,  XK TWO 
FR = F(XK,DM) TWO 
QT = QF(TERM,XK,FR,RC,UI TWO 
PRINT 205,  M TWO 
XKT = 0.  TWO 
lOUT = 0 TWO 
DO 2 K = 1,KMAX TWO 
CALL RELAXdO,IC,M,AFK) TWO 
CALL ROLLY(IO,IC) TWO 
PRINT 206,  K,XK,AFK TWO 
IF(K.EQ.KMAX) PRINT 212 TWO 
IF(ABS(XK-XKT).LT.TOL) lOUT = lOUT + 1 TWO 
KS = K + 1 TWO 
IF(IOUT.CE.KCONVI GO TO 3 TWO 

2 XKT = XK TWO 
3 KF = KS + KMAXl -  1 TWO 

DO 4 K = KS,KF TWO 
CALL RELAXdO,IC,M,AF) TWO 
CALL ROLLYdO.ICJ TWO 

4 PRINT 206,  K,XK,AF TWO 
PRINT 212 TWO 
CALL SQUARE(IO,IC) TWO 
CALL N0RNdO,IC,l ,XN,0) TWO 
CALL QUEUEdO,IC.,XN,Q,C<J,XIS,XIV,CS,CV) TWO 
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FR = FR*l.E-6 
PRINT 210,  FR 
FR = FtXK,DM) 
FO = FR*l.E-6 
PRINT 211,  FO 
PRINT 207,  Q,CQ,XIS,XIV,CS,CV 
QC = QF(Q,XK,FR,RC,UI 
PRINT 208# QT 

1 PRINT 209,  QC 
PRINT 213 
RETURN 
END 

TWO 
TWO 
TWO 
TWO 
TWO 
TWO 
TWO 
TWO 
TWO 
TWO 
TWO 
TWO 
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c INIT 
C SUBROUTINE INITCIOI INIT 
C INIT 
C SUBROUTINE INIT INITIALIZES THE FIELD VALUES TO THOSE FOR THE INIT 
C CLOSED RESONATOR IN THE CORRESPONDING REGION OF THE OPEN INIT 
C RESONATOR. THE FIELD VALUES IN THE CUTOFF REGION ARE SET TO INIT 
C ZERO. INIT 
C INIT 
C PARAMETER USED: INIT 
C INIT 
C 10 -  THE ORDER OF THIi ARRAY BEING INITIALIZED. INIT 
C INIT 
C INIT 

SUBROUTINE INIT(IO) INIT 
COMMON /FIELD/H2(51,402)/PARAM/HR,HZ,XK/CONST/PI,BR INIT 
DIMENSION S(51),B(101| ,  A(5I,401I INIT 
EQUIVALENCE (H2(1,2 J,A(1,1)»,(S(1 »,A(1,102)»,(B(1),A(1,1031 I INIT 
IP = 10 ^ 1 INIT 
I M = I 0 - 1  I N I T  
11 = IP/:? INIT 
IR = 4*10-3 INIT 
DO 1001 [  = 1,IZ INIT 
ANGLE I?I*FL0AT(I-1I/FL0AT(IM) INIT 

1001 S(II = SINtANGLE) INIT 
00 1002 I = 1,10 INIT 
ARG = 3. IB31706*FL0AT(I-1I/FL0AT(IM) INIT 
CALL BESJ(ARG,l,B(i; , l.E-4,IJi;  INIT 

1002 IF(I.EQ.l)  B(II = 0.  INIT 
DO 1004 I = 1,IZ INIT 
DO 1004 J = 1,10 INIT 

1004 A(I,j;  = S(II*B<JI INIT 
DO 1005 I = 1,IZ INIT 
DO 1005 J = IP,IR INIT 

1005 A{I ,J I = 0 .  INIT 
XK = PI**2 + 8R**2 INIT 
RETURN INIT 
END INIT 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE RELAX(IO,IC,M,AF) 

SUBROUTINE RELAX APPLIES A RELAXATION FORMULA TO THE ARRAY 
REPRESENTING THE ELECTRIC FIELD IN THE RESONATOR. THE 
ACCELERATION OF THE RELAXATION IS CONTROLABLE» 

PARAMETERS USED: 

10- ORDER OF THE ARRAY BEING RELAXED 
IC -  LOCATION OF THE REENTRANT CORNER 
M -  NUMBER OF TIMES THE ARRAY IS RELAXED BEFORE RETURN 
AF -  ACCELERATING FACTOR FOR THE RELAXATION. 

SUBROUTINE RELAX(10,IC,AFJ 
COMMON /fIELD/H2(51,402I/PARAM/HR,HZ,XK/CONST/PI» BR 
COMMON /C0RNER/EMM(5,5),EXPAND<5,5),C(5I,RESULT(5,5),ANSWER(5,5I 
D I M E N S I O N  A ( 5 1 , 4 0 l l , I Z ( 5 ) , I R ( 5 )  
EQUIVALENCE (H2(1,2 »,A(I» 1H 

OR(H,X,Y,Z,I,R2fH2L» 
I 

[W+X+(W-X;/FL0AT(2*(I-1))+R2*(Y+ZI) 
/(2.*(1.+R2» + 1. /FL0AT((I-II**2 I-H2L) 

RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 

R2 = (HR/HZ)**2 RELAX 
H2L = HFl*HR*XK RELAX 
ICMl = IC - 1 RELAX 
ICM2 = IC - 2 RELAX 
ICP2 = IC + 2 RELAX 
JP2 = 10^2 RELAX 
4P1 = lO+l RELAX 
JM2 = 10-2 RELAX 
JMl = 10-1 RELAX 
JR = 4*JM1 RELAX 
IZS = JP31/2 RELAX 
IZM = IZS-1 RELAX 
I R ( 1 )  =  J M 2  RELAX 
I R ( 2 I  =  J M 2  RELAX 
I R ( 3 »  =  J M 2  RELAX 

oc VO 



www.manaraa.com

I R ( 4 )  =  1 0  
IR(5I = JP2 
I Z ( 1 )  =  I C  +  2  
I Z ( 2 »  =  I C  
IZ(3» = ICM2 
IZ(4) = ICM2 
IZ(5) = ICM2 
D O  2 0 0 1  K  =  I t M  
00 2002 J = 2,JM2 
D O  2 0 0 3  I  =  2 , I Z M  

2003 A(I,J) = R(A(I,J+i; ,A(I,J-i; ,A(I+l,J),A(I 
1  * A F  -  ( A F  -  1 . ) * A < I , J )  

1  =  I Z S  
2002 A(I,J) = R(A(I,J+1I,A(I,J-1),A(I-1,J),A(I 

1  * A F  -  ( A F  -  1 . I * A ( I , J l  
J = J Ml 
DO 2008 Î = 2,IZM 
IF(IC.EO.l)  GO TO 2104 
IF(I.EQ.(ICMI); GO TO 2005 
IF(I.EQ.ÎC) GO TO 2006 
IFd.EQ.dCPlH GO TO 2007 

2 1 0 4  A d ,  J )  =  R < A ( I , J + 1 I , A ( I , J - 1 # , A ( I + 1 , J I , A ( I  
1  * A F  -  ( A F  -  1 .  I # A ( I , J I  

GO TO 2008 
2005 A(I,J) = 0.  

DO 2012 I. = 1 ,5 
2012 AdtJ) = A(I,J) + EMM(3il-»*AdZ(L) ,  IR{L) ) 

GO TO 2008 
2006 Ad,J) = 0.  

DO 2013 I.  = 1,5 
2013 Ad,J) =  A ( I , J »  4- EMM(2,L) * A d Z ( L I , I R ( L ) »  

GO TO 2008 
2007 A(I,J> = 0.  

DO 2014 I. = 1,5 
2014 Ad,J) = A(I,JI + EMM(l „IL) * A d Z ( L I  , I R ( L n  
2008 CONTINUE 

I  =  I Z S  

RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 

1 , J ) , J , R 2 , H 2 L »  R E L A X  
RELAX 
RELAX 

1 , J » , 4 , R 2 , H 2 L )  R E L A X  
RELAX 
RELAX 
RELAX 
RELAX o 
RELAX 
RELAX 
RELAX 

1 , J ) , J , R 2 , H 2 L I  R E L A X  
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
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A ( I , J I  =  R ( A ( I , J + 1 ) , A ( I , J - 1 ) » A ( I - 1 , J > , A ( I  
1  % A F  -  ( A F  -  1 , l * A ( I , J )  

I F ( I C . E Q . l )  G O  T O  2 0 0 1  
J = 10 
00 2009 I = 2tICM2 

2009 A(I,JI = R(A(I,J+l) ,A;i ,J-l) ,A(I+l,J),A(I 
1  * A F  -  ( A F  -  1 . ) * A ( I , j ;  

1 = ICMl 
A ( I , J #  =  0 *  
DO 2015 L = 1,5 

2015 Ad.J) = A{I#JI + EMM(4,L1*A(IZ(LI ,  IR(L) I 
J  — J PI 
DO 2010 I = 2,ICM2 

2010 A(I,J) = R(A(IiJ+ll ,A(I,J-l l ,A(I+l,J),A(I 
1  * A F  -  ( A F  -  1 . ; * A ( I , J I  

I = ICMl 
A ( I , J I  =  0 .  
DO 2016 L = 1,5 

2016 Ad,J) = Ad,J) + EMM(5,L;*A(IZ(LI,IR(L#I 
DO 2011 J = JP2,JR 
DO 2011 I = 2,ICMl 

2011 Ad,J) = R(Ad,J + l ) ,Ad,J-l l ,A(I + l ,JI,A(I 
1  * A F  -  ( A F  -  1 . ) * A ( I , J )  

2001 CONTINUE 
IFdC-EQ.U RETURN 
D O  2 0 1 7  L  =  1 , 5  

2017 C(L) = 0.  
DO 2018 K = 1,5 
D O  2 0 1 8  L  =  1 , 5  

2018 C(Kl = + EXPAND(K,L)»A(IZ(L),IR(L)I 
RETURN 
END 

J ) , J , R 2 , H 2 L )  

J ) , J , R 2 , H 2 L I  

J D , J , R 2 , H 2 L )  

J } , J , R 2 , H 2 L )  

RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 
RELAX 



www.manaraa.com

c ROLLY 
C SUBROUTINE ROLLY(10,ICI ROLLY 
C ROLLY 
C SUBROUTINE ROLLY CALCULATES THE FINITE DIFFERENCE FORM OF THE ROLLY 
C RAYLEIGH QUOTIENT FOR THE ELECTRIC FIELD ARRAY. ROLLY 
C ROLLY 
C PARAMETERS USED: ROLLY 
C ROLLY 
C 10 -  ORDER OF THE ARRAY ROLLY 
C IC -  LOCATION OF THE REENTRANT CORNER. ROLLY 
C ROLLY 
C ROLLY 

SUBROUTINE ROLLY(IO,ICI ROLLY 
COMMON /FIEL0/H2(51t402»/PARAM/HR,HZ,XK ROLLY 
DIMENSION A(51,40i;  ROLLY 
EQUIVALENCE CH2(1,2 » »A(I,I  M ROLLY 

O Q N ( V , W , X ,Y, Z , R , I )  =  V * ( V * ( 2 . * ( 1 . + R )  +  1 . / F L 0 A T ( ( 1 - 1 1 * * 2 1  I  R O L L Y  
1 -  <W+X+(W-X;/FL0AT(2*(I-1II+R*(Y+ZII# ROLLY 

R2 = (HR/HZ»»*2 ROLLY 
RQN = 0.  ROLLY 
RQD = 0.  ROLLY 
IZO = CI0H)/2 ROLLY 
lA = lO-l  ROLLY 
I Z  =  I A / 2  R O L L Y  
IR = 4*IA ROLLY 
DO 3001 J = 2»IA ROLLY 
DO 3002 I = 2tIZ ROLLY 
R Q N  =  0 N ( A ( I , J ) , A ( I , J + 1 ) , A ( I , J - 1 ) , A ( I + 1 , J ) , A ( I - 1 , J ) , R 2 , J )  +  RQN ROLLY 

3002 RQD = RQD + A(I,J)*A(I,J) ROLLY 
I  =  I Z O  R O L L Y  
R Q N  =  Q N < A ( I , J ) , A ( I , J + l ) , A ( I , J - l ) , A ( I - l , J ) , A ( I - l , J ) , R 2 , J ) / 2 . + R Q N  ROLLY 

3001 RQD = RQD •  A(I,J)*A(I,J)/2.  ROLLY 
IFdC.EQ. l> GO TO 3004 ROLLY 
ICMl = IC -  1 ROLLY 
DO 3003 J = 10,IR ROLLY 
DO 3003 I = 2,ICMl ROLLY 
R Q N  =  Q N ( A ( I , J ) , A ( I , J + l l , A ( I , J - i ; , A ( I + l , J ) , A ( I - l , J ) , R 2 , J )  +  RQ.M ROLLY 
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3003 RQO = ROD •  ROLLY 
3004 XK = RQN/(:RQD*HR*HR> ROLLY 

RETURN ROLLY 
END ROLLY 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE SQUARE*10,IC) 

SUBROUTINE SQUARE CALCULATES THE SQUARED MAGNITUDE OF THE 
MAGNETIC FIELD FROM THE ELECTRIC FIELD, LEAVING THE RESULT IN 
APPROXIMATELY THE SAME ARRAY AS WAS THE ORIGINAL DATA. 

PARAMETERS USED: 

10 -  ORDER OF 
IC -  LOCATION 

THE ARRAY 
OF REENTRANT CORNER. 

5001 

5003 

5002 

SUBROUTINE SQUARE(10,IC» 
COMMON /FIEL0/H2(51,402 »/PARAM/HR,HZ,XK 
DIMENSION E(51,401) 
EQUIVALENCE (H2<1,2 I ,E(1,II I 
H S Q ( V , W , X , Y , Z , J , R 1  =  ( ( V * F L 0 A T ( J - 1 ) * ( 1 . / ( F L 0 A T ( J ) - 1 . 5 )  

1  - 1 . / ( F L 0 A T ( > + W * F L 0 A T ( J l / ( F L O A T { J I - O . Ç I  
2  -X*FL0AT(J-2i/<FL0AT(J*-1.5*)**2I 
3 +R*((Y-Z)**2I 

R = (HR/HZ)**2 
JA = 10 + 1 
IZ = JA/2 
I Z M  =  I Z  -  1  
lA = 10 -  1 
JR = 4*IA 
J = 1 
DO 5001 I 
H 2 ( I , J )  =  
DO 5002 J 
1 = 1 
H 2 ( I , J )  =  
DO 5003 I 
H 2 ( I , J )  =  
I = IZ 
H 2 ( I , J l  =  H S Q ( E ( I , J ) , E ( I f J + i ; , E ( I , J - l ) , E ( I - l , j ; , E ( I - l , J ) , J , R )  

=  1 , I Z  
H S Q ( 0 . , E ( I , 2 ) , 0 . , 0 . , 0 . , 2 , R I * 9 .  
«  2 , I A  

H S Q ( 0 . , 0 . , 0 . , E ( I + 1 , J I , - E ( I + 1 , J I , J , R )  
=  2 , I Z M  
H S Q ( E ( I , J } , E ( I f J + 1 ) , E ( I , J - 1 ) , E ( I + 1 , J ) , E ( I - 1 , J ) , J , R I  

SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 
SQUARE 

vo 
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c NORM 
C SUBROUTINE N0RM(I0,IC,KEY,XN,KEY2I NORM 
C NORM 
C SUBROUTINE NORM IS A UTILITY ROUTINE WHICH PERMITS NORMALIZATION NORM 
C OF EITHER THE ELECTRIC FKELD OR MAGNETIC FIELD SQUARED ARRAYS BY NORM 
C EITHER A SUPPLIED FACTOR OR BY THE LARGEST ELEMENT IN THE NORM 
C SUPPLIED ARRAY. NORM 
C NORM 
C PARAMETERS USED: NORM 
C NORM 
C 10 -  ORDER OF ARRAY NORM 
C IC -  LOCATION OF REENTRANT CORNER NORM 
C KEY -  SET TO 0 FOR ELECTRIC FIELD NORM 
C SET TO 1 FOR MAGNETIC FIELD SQUARED NORM 
C XN -  NORMALIZATION FACTOR (SEE KEY2I NORM 
C KEY2 -  IF Ot SELECT LARGEST ELEMENT OF SUPPLIED ARRAY FOR XN NORM 
C IF It  USE VALUE SUPPLIED FOR XN. NORM 
C NORM 
C NORM 

SUBROUTINE NORM(I0,IC»KEY,XN,KEY2) NORM 
COMMON /FIELD/H2X51,402) NORM 
DIMENSION A(51,40Il  NORM 
EQUIVALENCE tH2(1 » 2  I ,A(1,1H NORM 
IZ = (10+11/2 NORM 
JEND = 4*10-3 NORM 
I F d C . E Q . l l  J E N D  =  1 0  N O R M  
IF(KEY.EQ.O) GO TO 4000 NORM 
DO 4101 I = 1,IZ NORM 
DO 4101 J  = 1,JEND NORM 

4101 A(I,JEND -  J + 1)  = H2(ItJEND -  J + II NORM 
4000 IF(KEY2.EQ.1) GO TO 4301 NORM 

XN = 0« NORM 
DO 4001 J = ItJEND NORM 
I END = IZ NORM 
IF(J.GT.10) lEND = IC NORM 
DO 4001 I » 1,1 END NORM 

4001 IF(ABS(A(I,J)I.GT.XN) XN = ABS(A(I,J))  NORM 
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4301 DO 4002 J = IfJENO NORM 
I END = IZ NORM 
I F ( J . G T . I O >  I  E N D  =  I C  NORM 
00 4002 1=1»IEND NORM 

4002 A (  I  , J  1  =  A ( I , J I / X N  NORM 
I F ( K E Y . E Q # 0 )  R E T U R N  NORM 
DO 4201 I = 1,12 NORM 
DO 4201 J = ItJEND NORM 

4201 H 2 ( I » J )  =  A d f J »  NORM 
RETURN NORM 
END NORM 



www.manaraa.com

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE; QUEUE(I0, IC,XN.,QCALC,CQ,SS,SV,AYES, AYEV» 

SUBROUTINE QUEUE CALCULATES FROM THE MAGNETIC FIELD SQUARED 
ARRAY THE SUMS WHICH CORRESPOND TO THE INTEGRALS OF THE 
MAGNETIC FIELD SQUARED OVER THE VOLUME AND SURFACE OF THE 
RESONATOR BEING CONSIDERED. 

PARAMETERS USED: 

10 - ORDER OF THE ARRAY 
IC - LOCATION OF REENTRANT CORNER 
XN - NORMALIZATION FACTOR USED PREVIOUSLY ON THE ARRAY 
QCALC - RESULTING RATEO OF VOLUME TO SURFACE SUMS 
CQ - RATIO CORRESPONDING TO QCALC IN THE IMMEDIATE VICINITY 

OF THE REENTRANT CORNER 
SS - SURFACE SUM 
SV - VOLUME SUM 
AYES - TERM CORRESPONDING TO SS AT THE CORNER 
AYEV - TERM CORRESPONDING TO SV AT THE CORNER. 

SUBROUTINE QUEUE(10,IC,XN,QCALC,CQ,SS,SV,AYES,AYEV» 
COMMON /F:[ELD/A(51 ,402 ) /PARAM/HR, HZ,XK 
COMMON /C0RNER/EMM(5,5|,EXPAND(5,5),C(5»,RESULT(5,5),ANSWER(5,5» 
DOUBLE PRECISION SVOL,SSURF,H3,VR,VOLUME,VOL,H2PI,AO,A1,A31,A121 
DOUBLE PRECISION PI,ADUB,DFLOAT,DBLE,HR2,HZ2,AREA,AA,SP,SC,T,U,V 
SVOL = O.DOO 
PI = 3.1415926535897932000 
HR2 = DBLE(HR) 
HZ2 = DBLE(HZ) 
JR = 4*10-3 
JPA = LO+L 
IZ = JPA/2 
L O M I  = 1 0 - 1  
T = 2.000*=DFL0AT(10M1) 
U = (DFLOAT(IOM1)-0.25DOO)/2.DOO 

QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 

VO 
00 



www.manaraa.com

a o o O CT-
o #— o o O 
o o o o O 

U) w fS) H* 

to •-< > o i-t M (/» (/> M > a M «/» M > o (/)(/> to c/> M •H t-4 < o 1-4 1-4 W4 M HH o t>4 c. < 
•n o -N YO O -n O (/> •V tt ?» o -n •0 •n •n :» o n -0 < < fi -n •n -n o o -n m "n -n -n o -n m 

m •o c m m o o R z z II 
M4 II H4 > 0» >-4 M 30 II C. > ^ M II c. > O Il II r r- u <- M #-« O c- o c. c. u 0> M4 o 
O » O O -n •  o o • • O •  •  O • Il o •  a •  a o O 
• </> m II o •  II </» m H O *  cr» m m Il o o o II II m m •  m o o II m O m o a Il o 
m o o f- M II T3 o u) m "O O O ro é • o O m O< F H o H o m •71 
o » M o ft é O o •  •  o o o {/> trt •  •  O • O • 1-4 •  a a o C. f-» + • n !/> <= ? (= * + M •n L o o < < M w É w r- w w N C- M »-» e. • 7> Q 

• O H* •D 73 1- #-4 O — r O O O O O O M • C O m a «-» > 
o o o II «• + * O — O II — o # o II r r • •  w O z II z > Il H 
CO 70 O ro 03 > CD > > > * > > 7> m o Z < 

Il 

o r • «-« 1-4 M é r H e- o r 2 73 H M rvj + z Z O • H» t-t w O O •-» tm U 
o m w n O O m > -• T3 Q m O m •  o o o M « m a n « m » 

• "O "O o YO C- > ** •  > (_ c o o •  •  # «-4 z < C. c c. Z 1 
H > m M M o > m 1 , H > w 1 m o CP l-l H m m o o a z m o M 
A £3 = * «— > M c_ o m M z o r •  a O O z N r- m z 

M # II •0 H4 — 73 i-» é — o * m o m •  o II c H D II 
0~ - M r>i M n II o •• m O "0 ^ H o o H4 2 a II 1 
M t-t N H* *  « »-» c. o •  M > • • o m m C. M 
O  o  — I c. < O * H * -« w M o Z n m O o a 

•— 7J ** w — #-« (U I «-< O O o II Z a ru 
> • * *»• \J1 75- o •- U1 

* 73 JL JL > O ro e_ M o  
> m = > 73 > o * — < < < o yi o  
7) > 7) 73 m 73 o I  —  O o  o  - n  < O  o  
m  W  m  > m  7> * r *  r - r - r  o  O  
> I I  > > N  < o  r  O  N. 

*  O  I I  I I  I I  > c  ro 
• I I  I  r  H  z  a 
U t  N  c  o  < m  O  
O  c  M  •  o  C- O  o  o  r  1  I I  O  
o  o  c  M  

o  z  w  o  
m  • n  
v  1  r  
N  o  •  •  > 
O  N  H  
O  U 1  
O  O  L .  

O  1  
o  t-> 

r o  
•  
o  
o  
o  

o  o  o  o  o  O  o  O  o  O  O O O  O  o  o  o  o  O  C  O  O  o  o  o  o o  o  o o o  O  O  O  o  o  o  
c  c  c  c  c  c  c  C  c  c  c  c  c  C  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  C  C  C  c  c  c  
m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  
c  c  c  c  C  c  c  c  c  C  c  c  c  c  C  c  c  c  c  c  c  c  C  c  c  c  c  c  c  c  c  c  C  c  c  c  c  
m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  M m  m  m  m  m  m  m  m  m  m  m  m  

66 



www.manaraa.com

o> 
o 
o 
-J 

o 
o 
U1 

» (h 

o o 

2m"T\-nonc/)< 
O H <-« *» > 
C w > i i r i i  II 
;o o CD o 
Z • (/> O IN (A 
2 • II Z 2 
m > <D Ci 

m m m m —» m m 

o o o 
Il II II II o o « Il II 

ui u> m 
> > > > o o o 

*•* m 
— (/» 

O • 
o r* 

11.-̂  

> • 

< ro 

m /u 
(A m 
H 
C 

Z 

< —. «• 
>. (/» t/» 
(/>(/>< 
(/ICO 

33 r 
m — 

4" 
+ 
> 

> •< 
-< m 
m < 
CO 

m m m m i-" 
< (/> < (/̂  Il II — 
* * 
H H + + f M o 
* * - - O 
"0 "0 O O vn vn 

* « • 2 3  
I I — "  
30 7) * * 
V O O 

X X ̂  
z z z z 

z m 
m (/) 
z c 
m I-
» -4 

z z 

z z 

o 
o 
o 
-J 

(/*(/) M > o M 
(/> o "n :o o r» 
c m 3C 
7) Il M, >0 H» 
-n # M 
M m II o II 

Il o o ui 
• > <-4 

I/I •I' ̂  D 
M • o 
c O o o II I 
7> 03 79 o 
u n »  M  »-•  
m w •* 

> m O 
VI o z 
n w # H" 

M 
H 6- o 
* ;d X 
 ̂ M 

* * 
_L ̂  > 
73 70 73 
N) m m 
* > > 
I 
IN 
tVJ 

II 

M 
• 
o 
o 
o 

O O O O O O j O O O O O O O O / O O O O O O O O O  
c c c c c c c c c c c c c c c c c c c c c c c  
m m m r n m m n i m n n m m m m m m m m m m m m m m  
c c c c c c c c c c c c c c c c c c c c c c c  
m m m m r n m m m m m m m m m m m m m m m m m m  

OOT 


	1971
	Losses in trapped-mode resonators
	David Maurice Morton
	Recommended Citation


	tmp.1412282525.pdf.4BH9h

